Comparative Analysis of Sensitizing Activity and Biodistribution Characteristics of Chlorin e6 Derivatives: Influence of the Nature of Charged Groups

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New data have been obtained that expand the understanding of the role of the chemical structure and physico-chemical properties of photosensitizer molecules in determining the processes of their interaction with various biological objects, including serum proteins, biological membranes, cells and cellular systems. Changes in the side substituents in the chlorin e6 molecule significantly affect the physico-chemical properties of new compounds, the level of their accumulation in cells, and the rate of migration between cells, but do not significantly affect the intracellular localization of sensitizers. It is assumed that the increased photosensitizing activity of chlorin e6 derivatives is due to the influence of lateral substituents on their biodistribution processes.

About the authors

T. E Zorina

Belarusian State University

Email: zorinate@mail.ru
Minsk, Belarus

T. I Ermilova

Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology

Belarus

I. V Kablov

Belarusian State University

Minsk, Belarus

I. E Kravchenko

Belarusian State University

Minsk, Belarus

T. V Shman

Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology

Minsk region, Belarus

T. V Kustova

Ivanovo State University of Chemical Technology

Ivanovo, Russia

D. B Berezin

Ivanovo State University of Chemical Technology

Ivanovo, Russia

I. S Khudyaeva

Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Syktyvkar, Russia

V. P Zorin

Belarusian State University; International Sakharov Environmental Institute of the Belarusian State University

Minsk, Belarus; Minsk, Belarus

References

  1. Allison R. R. and Sibata C. H. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis and photodynamic therapy, 7 (2), 61–75 (2010). doi: 10.1016/j.pdpdt.2010.02.001
  2. Abrahams H. and Hamblin M. R. New photosensitizers for photodynamic therapy. J. Biochem., 473 (4), 347–364 (2016). doi: 10.1042/BJ20150942
  3. Aires-Fernandes M., Costa R. B., Amaral S. R., Mussagy C. U., Santos-Ebinuma V. C., and Primo F. L. Development of biotechnological photosensitizers for photodynamic therapy: cancer research and treatment – from benchtop to clinical practice. Molecules, 27, 6848– 6857 (2022). doi: 10.3390/molecules27206848
  4. Пылина Я. И., Худяева И. С. и Белых Д. В. Темновая и фотоиндуцированная цитотоксичность производных хлорофилла а и их аналогов по отношению к клеткам HeLa: некоторые закономерности «структура–активность». Макрогетероциклы, 15 (1), 25–33 (2022). doi: 10.6060/mhc224176b
  5. Зорина Т. Е., Янковский И. В., Яковец И. В., Кравченко И. Е., Ермилова Т. И., Шман Т. В., Белевцев М. В. и Зорин В. П. Внутриклеточная локализация и механизмы фототоксичности производных хлорина е6 и их липосомальных форм. Биофизика, 64 (4), 674–685 (2019). doi: 10.1134/S0006350915050267
  6. Gurinovich G. P., Zorina T. E., Melnov S. B., Melnova N. I., Gurinovich I. F., Grubina L. A., Sarzhevskaya M. V., and Cherenkevich S. N. Photodynamic activity of chlorine e6 and chlorine e6 ethylenediamide in vitro and in vivo. J. Photochem. Photobiol. B: Biol., 13, 51–57 (1992). doi: 10.1016/1011-1344(92)80039
  7. Gushchina O. I., Grishina M. Yu., Lebedeva V. S., Larkina E. A., and Mironov A. F. Synthesis of hydroxy derivatives of chlorinе6. Macroheterocycles, 10 (1), 81–83 (2017). doi: 10.6060/mhc161072g
  8. Далидович А. А., Марченко Л. Н., Федулов А. С., Трухачева Т. В., Кривоносов В. В., Зорина Т. Е. и Зорин В. П. Фотодинамическая терапия Фотолоном® миопической макулопатии (Парадокс, Минск, 2012). 224 с.
  9. Каплан М. А., Зорин В. П., Малыгина А. И., Каширцева И. В. и Архипова Л. М. Оценка противоопухолевой эффективности применения диметилового эфира хлорина е6 при фотодинамической терапии. Фотодинамическая терапия и фотодиагностика, 2, 8–11 (2014).
  10. Зорин В. П., Хлудеев И. И. и Зорина Т. Е. Распределение порфириновых сенсибилизаторов между белковыми и клеточными элементами крови. Биофизика, 45 (2), 313–319 (2000).
  11. Kustov A. V., Belykh D. V., Smirnova N. L., Khudaeva I. S., and Berezin D. B. Partition of methylpheophorbide a, dioxidine and their conjugate in the 1-octanol/phosphate saline buffer biphasic system. J. Chem. Thermodynamics, 115, 302–306 (2017). doi: 10.1016/j.jct.2017.07.031
  12. Zenkevich E., Sagun E., Knyukshto V., Shulga A., Mironov A., Efremova O., Bonnet R., Phinda Songca S., and Kassem M. Photophysical and Photochemical properties of potential porphyrin and chlorin photosensitizers for PDT. J. Photochem. Photobiol. B: Biol., 33, 171–180 (1996). doi: 10.1016/1011-1344(95)07241-1
  13. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).
  14. Ormerod M. G. Flow Cytometry: A Practical Approach (Oxford University Press, Oxford, 2000). doi: 10.1002/3527600906.mcb.200300144
  15. El-Hashash E. F. and Shiekh R. H. A. A comparison of the Pearson, Spearman Rank and Kendall Tau сorrelationсoefficients using quantitative variables. Asian J. Probability Statistics, 20 (3), 36–48 (2022). doi: 10.9734/AJPAS/2022/v20i3425
  16. Bastein E., Schneider R., Hackbarth S., Dumas D., Jasniewski J., Röder B., Bezdetnaya L., and Lassalle H.P. PAMAM G4.5-chlorin e6 dendrimeric nanoparticles. Photochem. Photobiol. Scien., 14, 2203–2213 (2015). doi: 10.1039/c5pp00274e
  17. Зорина Т. Е., Янковский И. В., Кравченко И. Е., Шман Т. В., Белевцев М. В. и Зорин В. П. Оценка фотои цитотоксичности этерифицированных производных хлорина е6 и их липосомальных форм. Биофизика, 60 (5), 922–930 (2015).
  18. Хлудеев И. И., Козырь Л. А., Зорина Т. Е. и Зорин В. П. pH-зависимые изменения механизмов транспорта хлорина е6 и его производных в крови. Бюл. эксперим. биологии и медицины, 160 (8), 170–175 (2015).
  19. Хлудеев И. И. и Зорин В. П. Ультрафильтрационный метод оценки параметров связывания производных хлорина е6 с сывороточным альбумином. Вестн. БГУ, Сер. 1, 2, 19–24 (2015).
  20. Kustov A. V., Berezin D. B., Zorin V. P., Morshnev Ph. K., Kukushkina N. V., Krestyaninov M. A., Kustova T. V., Strelnikov A. I., Lyalyakina E. V., Zorina T. E., Abramova O. B., and Kozlovtseva E. A. Monocationic chlorin as a promising photosensitizer for antitumor and antimicrobial photodynamic therapy. Pharmaceutics, 15 (61), 1–15 (2023). doi: 10.3390/pharmaceutics15010061
  21. Gradova M. A., Gradov О. В., Lobanov A. V., Bychkova A. V., Nikolskaya E. D., Yabbarov N. G., Mollaeva M. R., Egorov A. E., Kostyukov A. A., Kuzmin V. A., Khudyaeva I. S., and Belykh D. V. Characterization of a novel amphiphilic cationic chlorin photosensitizer for photodynamic applications. Int. J. Mol. Sci., 24, 345–359 (2023). doi: 10.3390/ijms24010345
  22. Kustov A. V., Morshnev Ph. K., Kukushkina N. V., Smirnova N. L., Berezin D. B., Karimov D. R., Shukhto O. V., Kustova T. V., Belykh D. V., Mal'shakova M. V., Zorin V. P., and Zorina T. E. Solvation, cancer cell photoinactivation and the interaction of chlorin photosensitizers with a potential passive carrier non-ionic surfactant Tween 80. Int. J. Mol. Sci., 23, 5294 (2022). doi: 10.3390/ijms23105294
  23. Kustov A. V., Morshnev Ph. K., Kukushkina N. V., Krestyaninov M. A., Smirnova N. L., Berezin D. B., Kokurina G., and Belykh D. V. The effect of molecular structure of chlorin photosensitizers on photo-bleaching of 1,3-diphenylisobenzofurane – the possible evidence of iodine reactive species formation. Comp. Rend. Chim., 25, 97–102 (2022). doi: 10.5802/crchim.158
  24. Castano A. P., Demidova T. N., and Hamblin M. R. Mechanisms in photodynamic therapy: Part three – Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis and Photodynamic Therapy, 2, 91–106 (2005). doi: 10.1016/S1572-1000(05)00060-8
  25. Siemann D. W., Chaplin D. J., and Horsman M. R. Vascular-targeting therapies for treatment of malignant disease. Cancer, 100 (12), 2491–2499 (2004). doi: 10.1002/cncr.21117
  26. Кустов А. В., Березин Д. Б., Стрельников А. И. и Лапочкина Н. П. Противоопухолевая и антимикробная фотодинамическая терапия: механизмы, мишени, клинико-лабораторные исследования. Практическое руководство (Ларго, M., 2020).
  27. Pervaiz S. and Olivo M. Art and science of photodynamic therapy. Clin. Exp. Pharmacol. Physiol., 33, 551–556 (2006). doi: 10.1111/j.1440-1681.2006.04406.x
  28. Kessel D. The role of low-density lipoprotein in the biodistribution of photosensitizing agents. J. Photochem. Photobiol. B, 14, 261–262 (1992). doi: 10.1016/1011-1344(92)85103-2
  29. Castano A. P., Demidova T. N., and Hamblin M. R. Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy, 2 (1), 1–23 (2005). doi: 10.1016/S1572-1000(05)00030-X
  30. Гельфонд М. Л. и Рогачев М. В. Фотодинамическая терапия в онкологической практике (Наука, СанктПетербург, 2019).
  31. Kongshaug M., Moan J., and Brown S. B. The distribution of porphyrins with different tumourlocalising ability among human plasma proteins. Br. J. Cancer, 59, 184–188 (1989). doi: 10.1038/bjc.1989.38
  32. Zorin V. P., Khludeyev I. I., Michalovsky I. S., Zorina T. E., Savitsky V. P., Mel'nov S. B., Kochubeyeva N. D., and Kravchenko I. E. Kinetic characteristics of porphyrin distribution in blood. Proc. SPIE. Lazer Use in Oncology II, 4059, 139–147 (2000).
  33. Савицкий В. П., Зорин В. П., Потапнев М. П. и Потапенко А. Я. Сравнительный анализ накопления производных хлорина е6 и гематопорфирина субпопуляциями лимфоцитов периферической крови. Бюл. эксперим. биологии и медицины, 138 (8), 16–22 (2004).
  34. Garrier J., Reshetov V., Gräfe S., Guillemin F., Zorin V., and Bezdetnaya L. Factors affecting the selectivity of nanoparticle-based photoinduced damage in free and xenografted chorioallantoïc membrane model. J. Drug Target, 22 (3), 220–231 (2014). doi: 10.3109/1061186X.2013.860981
  35. Shi Y., Wang S., Wu J., Jin X., and You J. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J. Controlled Release, 329 (10), 337–332 (2021). doi: 10.1016/j.jconrel.2020.11.054
  36. Kessel D. Apoptosis, paraptosis and autophagy: death and survival pathways associated with photodynamic therapy. Photochem. Photobiol., 95 (1), 119–125 (2019). doi: 10.1111/php.12952
  37. Ormond A. B. and Freeman H. S. Dye sensitizers for photodynamic therapy. Materials, 6, 817–840 (2013).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».