Study of the Structure and Function of Musculature in Planarians (Platyhelminthes)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The functional activity and morphological characteristics of the musculature of planarians have been studied. A physiological study conducted on isolated muscle cells of the planarian Procerodes littoralis (Turbellaria, Platyhelminthes) showed that caffeine in concentrations of 1–10 mM and depolarization caused by a high content of potassium ions (20–75 mM) had a dose-dependent stimulating effect on the musculature of planarians. Tapsigargin and cycloplazonic acid, calcium reuptake blockers in the sarcoplasmic reticulum store, reduced the number of muscle responses induced by both caffeine and depolarization. In addition, contractions of single P. littoralis muscle fibers induced by a medium with a high content of potassium ions were inhibited by ryanodine, which in mM concentrations is a blocker of the ryanodine calcium channels of the sarcoplasmic reticulum. The data obtained suggest that intracellular calcium store, as an intracellular source of calcium ions, play a role in the mechanism of contractile muscle response in flatworms. Histochemical examination using frozen sections and staining with fluorescently labeled phalloidin demonstrated the conservative organization of the body wall musculature of Schmidtea mediterranea planarians. The musculature of the body wall contains circular, diagonal and longitudinal muscle fibers. The thinnest circular fibers are densely packed in the outer layer of the musculature. The longitudinal fibers are the thickest and are mostly assembled in pairs. The diagonal fibers extend in two directions at an angle of 110–115 degrees to each other. Dorso-ventral muscle bundles penetrate the planarian body. The intestinal lumen is surrounded by thin longitudinal muscle fibers. Experiments have shown that planarians can be successfully used as a model object for studying the mechanisms of muscle contraction in flatworms.

About the authors

N. D Kreshchenko

Institute of Cell Biophysics, Russian Academy of Sciences

Email: nkreshch@rambler.ru
Pushchino, Russia

References

  1. Hodova I., Sonnek R., Gelnar M., and Valigurova A. Architecture of Paradiplozoon homoion: A diplozoid monogenean exhibiting highly-developed equipment for ectoparasitism. PLoS One, 13 (2), e0192285 (2018).
  2. Petrov A. A., Dmitrieva E. V., and Plaksina M. P. Neuromuscular organization and haptoral armament of Polyclithrum ponticum (Monogenea: Gyrodactylidae). J. Helminthol., 96, e74 (2022).
  3. Terenina N. B., Kreshchenko N. D., Mochalova N. V., and Movsesyan S. O. Serotonin and neuropeptide FMRFamide in the attachment organs of trematodes. Helminthologia, 55 (3), 185–194 (2018).
  4. Mair G. R., Maule A. G., Shaw C., Johnston C. F., and Halton D. W. Gross anatomy of the muscle systems of Fasciola hepatica as visualized by phalloidin-fluorescence and confocal miscroscopy. Parasitology, 117, 75–82 (1998).
  5. Gustafsson M. K. S, Terenina N. B., Kreshchenko N. D., Reuter M., Maule A. G., and Halton D. W. Comparative study of the spatial relationship between nicotinamide adenine dinucleotide phosphate-diaphorase activity, serotonin immunoreactivity and GYIRFamide immunoreactivity and the musculature of adult liver fluke, Fasciola hepatica (Digenea, Fasciolidae). J. Comp. Neurol., 429 (1), 71–79 (2001).
  6. Kreshchenko N. D. Morphological and functional characteristics of the trematode Fasciola hepatica musculature. Biophysics, 69 (6), 1102–1112 (2024).
  7. Mair G. R., Maule A. G., Day T. A., and Halton D. W. A confocal microscopical study of the musculature of adult Schistosoma mansoni. Parasitology, 121 (2), 163–170 (2000).
  8. Tolstenkov O. O., Terenina N. B., Serbina E. A., and Gustafsson M. K. S. The spatial relationship between the musculature and the 5-HT and FMRFamide immunoreactivities in cercaria, metacercaria and adult Opisthorchis felineus (Digenea). Acta Parasitol., 55 (2), 123–132 (2010).
  9. Terenina N. B., Kreshchenko N. D., Mochalova N. V., Nefedova D. V., Voropaeva E. L., Movsesyan S. O., Demiaszkiewicz A., Yashin V. A., and Kuchin A. V. The new data on the serotonin and FMRFamide localization in the nervous system of Opisthorchis felineus metacercaria. Acta Parasitol., 65, 361–374 (2020).
  10. Maule A. G. and Geary T. G. Helminth neuromuscular system. Parasitol. Today, 13 (5), 163–165 (1997).
  11. Fairweather I., Brennan G. P., Hanna R. E. B., Robinson M. W., Skuce P. J. Drug resistance in liver flukes. IJP: Drugs and Drug Resistance, 12, 39–59 (2020).
  12. Rieger R. M., Salvenmoser W., Legniti A., Reindl S., and Tyler S. Organization and differentiation of the body-wall musculature in Macrostomum (Turbellaria, Macrostomida). Hydrobiologia, 227, 119–129 (1991).
  13. Rieger R. M., Salvenmoser W., Legneti A., Tyler S. Phalloidin rhodamine preparations of Macrostomum hystricinum marinum (Platyhelminthes): morphology and postembryonic development of the musculature. Zoomorphology, 114, 133–147 (1994).
  14. Kotikova E., Raikova O., Reuter M., and Gustafs-son M. K. The nervous and muscular systems in the free-living flatworm Castrella truncata (Rhabdocoela): An immunohistochemical and phalloidin fluorescence study. Tissue and Cell, 34 (5), 365–374 (2002).
  15. Grosbusch A. L., Bertemes Ph., and Egger B. The adult musculature of two pseudostomid species reveals unique patterns for flatworms (Platyhelminthes, Prolecithophora). J. Morphology, 280 (9), 1393–1404 (2019).
  16. Bueno D., Baguñà J., and Romero R. Cell-, tissue-, and position-specific monoclonal antibodies against the planarian Dugesia (Girardia) tigrina. Histochem. Cell Biol., 107 (2), 139–149 (1997).
  17. Cebrià F., Vispo M., Newmark Ph., Bueno D., and Romero R. Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina. Dev. Genes Evol., 207 (5), 306–316 (1997).
  18. Kreshchenko N. D. Some details on the morphological structure of planarian musculature identified by fluorescent and confocal laser-scanning microscopy. Biophysics, 62 (2), 271–277 (2017).
  19. Kobayashi C., Kobayashi S., Orii H., Watanabe K., and Agata K. Identification of two distinct muscles in the planarian Dugesia japonica by their expression of myosin heavy-chain genes. Zool. Sci., 15, 861–869 (1998).
  20. Orii H., Ito H., and Watanabe K. Anatomy of the planarian Dugesia japonica I. The muscular system revealed by antisera against myosin heavy chains. Zoological Science, 19 (10), 1123–1131 (2002).
  21. Крещенко Н. Д., Кузнецов Г. В. и Митьковский Д. Е. Строение мускулатуры тела у планарий Polycelis tenuis (Platyhelminthes). В кн.: Современные проблемы общей и прикладной паразитологии. Сб. науч. статей по материалам Всерос. XVII науч.-практич. конф-ии памяти проф. В.А. Ромашова (Изд-во «Цифровая полиграфия», Воронеж, 2024), сс. 75–80.
  22. Cebrià F. Planarian body-wall muscle: regeneration and function beyond a simple skeletal support. Front. Cell. Dev. Biol., 4, 8 (2016).
  23. Robb S. M. C., Ross E., and Alvarado A. S. SmedGD: the Schmidtea mediterranea genome database. Nucl. Acids Res., 36 (Database issue), D599–606 (2008).
  24. Blair K. L., Bennet J. L., and Pax R. A. Praziquantel: physiological evidence for its site(s) of action in magnesium-paralyzed Schistosoma mansoni. Parasitology, 104 (1), 59–66 (1992).
  25. Moneypenny C. G., Maule A. G., Shaw C., Day T. A., Pax R. A., and Halton D. W. Physiological effects of platyhelminth FMRFamide-related peptides (FaRPs) on the motility of the monogenean Diclidophora merlangi. Parasitology, 115 (3), 281–288 (1997).
  26. Marks N. J., Johnston S., Maule A. G., Halton D. W., Shaw C., Geary T. G., Moore S., and Thompson D. P. Physiological effects of platyhelminth RFamide peptides on muscle-strip preparations of Fasciola hepatica (Trematoda: Digenea). Parasitology, 113 (6), 393–401 (1996).
  27. Graham M. K., Fairweather I., and McGeown J. G. The effects of FaRPs on the motility of isolated muscle strips from the liver fluke, Fasciola hepatica. Parasitology, 114 (5), 455–465 (1997).
  28. Day T. A., Bennet J. L., and Pax R. A. Serotonin and its requirement for maintenance of contractility in muscle fibres isolated from Schistosoma mansoni. Parasitology, 108 (4), 425–432 (1994).
  29. Kumar D., McGeown J. G., Reynoso-Ducoing O., Ambrosio J. R., and Fairweather I. Observations on the musculature and isolated muscle fibres of the liver fluke, Fasciola hepatica. Parasitology, 127, 457–473 (2003).
  30. Johnston R. N., Shaw C., Halton D. W., Verhaert P., Blair K. L., Brennan G. P., Price D. A., and Anderson P. A. V. Isolation, localisation, and bioactivity of the FMRFamide-related neuropeptides GYIRFamide and YIRFamide from the marine turbellarian Bdelloura candida. J. Neurochem., 67 (2), 814–821 (1996).
  31. Moneypenny C. G., Kreshchenko N., Moffett C. L., Halton D. W., Day T. A., and Maule A. G. Physiological effects of platyhelminth FMRFamide-related peptides and classical transmitters on dispersed muscle fibres of the turbellarian, Procerodes littoralis. Parasitology, 122 (4), 447–455 (2001).
  32. Mousley A., Marks N. J., Halton D. W., Geary T. G., Thompson D. P., and Maule A. G. Arthropod FMRFamide-related peptides modulate muscle activity in helminths. Int. J. Parasitol., 34 (6), 755–768 (2004).
  33. Novozhilova E., Kimber M. J., Qian H., McVeigh P., Robertson A. P., Zamanian M., Maule A. G., and Day T. A. FMRFamide-like peptides (FLPs) enhance voltage-gated calcium currents to elicit muscle contraction in the human parasite Schistosoma mansoni. PLoS Neglected Tropic. Dis., 4 (8), e790 (2010).
  34. Kreshchenko N. D. Investigation of the physiological role of serotonin in the muscle function in planaria. Biochemistry (Moscow), Suppl. Ser. A: Membrane Cell Biol., 14 (1), 81–90 (2020).
  35. Kreshchenko N., Day T. A., Halton D. W., and Maule A. G. Muscle contraction mechanisms in the marine turbellarian, Procerodes littoralis. In: Abstr. 8th Eur. Multicolloqium on Parasitology (Sept. 10–14, Poznan, Poland). Acta Parasitol., 45 (3), 256 (2000).
  36. Totten M. I. J., Kreshchenko N., Marks N. J., Halton D. W., Day T. A., and Maule A. G. Investigation into flatworm muscle contraction using an isolated muscle fiber assay. In: Abstr. Book of Spring Meeting of Brit. Soc. for Parasitology (17–20 April, Keele, UK) (2001), p. 15.
  37. Mair G. R., Maule A. G., Shaw C., and Halton D. W. Muscling in on Parasitic Flatworms. Parasitology Today, 14 (2), 73–76 (1998).
  38. Ross K. G., Omuro K. C., Taylor M. R., Munday R. K., Hubert A., King R. S., and Zayas R. M. Novel monoclonal antibodies to study tissue regeneration in planarians. BMC Devel. Biol., 15, 2 (2015).
  39. Grohme M. A., Schloissnig S., Rozanski A., Pippel M., Young G. R., Winkler S., Brandl H., Henry I., Dahl A., Powell S., Hiller M., Myers E., and Rink J. C. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature, 55, 56–61 (2018).
  40. Fields C. and Levin M. Are planaria idividuals? What regenerative biology is telling us about the nature of multicellularity. Evolutionary Biology, 45 (3), 237–247 (2018).
  41. Cebrià F. and Romero R. Body-wall muscle restoration dynamics are different in dorsal and ventral blastemas during planarian anterior regeneration. Belg. J. Zool., 131, 5–9 (2001).
  42. Blair K. L. and Anderson P. A. V. Physiological and pharmacological properties of muscle cells isolated from the flatworm Bdelloura candida (Tricladia). Parasitology, 109, 325–335 (1994).
  43. Day T. A., Haithcock J., Kimber M., and Maule A. G. Functional ryanodine receptor channels in flatworm muscle fibres. Parasitology, 120 (4), 417–422 (2000).
  44. Cobbett P. and Day T. A. Functional voltage-gated Ca2+ channels in muscle fibers of the platyhelminth Dugesia tigrina. Comp. Biochem. Physiol. Part A, 134 (3), 593–605 (2003).
  45. Novozhilova E. B. Physiology and pharmacology of flatworm muscle. A dissertation for the degree of Doctor of Philosophy (Iowa State University, Ames, Iowa, 2008).
  46. Kreshchenko N. D. A study of the mechanisms of action of FMRF-like peptides in inducing muscle contraction in planarians (Platyhelminthes). Biophysics, 66 (3), 472–482 (2021).
  47. Wheeler N. J., Agbedanu P. N., Kimber M. J., Ribeiro P., Day T. A., and Zamanian M. Functional analysis of Girardia tigrina transcriptome seeds pipeline for anthelmintic target discovery. Parasites and Vectors, 8, 34 (2015).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».