Immutable and Variable Mechanisms in Synaptic Modulation of Various Types of Skeletal Muscles
- Authors: Gorshunova A.N1,2, Ziganshin A.U1, Grishin S.N1, Gabdrakhmanov A.S.2, Khairullin A.E1,3
-
Affiliations:
- Kazan State Medical University
- Kazan Law Institute of the Ministry of Internal Affairs of Russia
- Kazan (Volga Region) Federal University
- Issue: Vol 70, No 5 (2025)
- Pages: 933-943
- Section: Complex systems biophysics
- URL: https://journal-vniispk.ru/0006-3029/article/view/348534
- DOI: https://doi.org/10.31857/S0006302925050099
- ID: 348534
Cite item
Abstract
About the authors
A. N Gorshunova
Kazan State Medical University; Kazan Law Institute of the Ministry of Internal Affairs of RussiaKazan, Russia; Kazan, Russia
A. U Ziganshin
Kazan State Medical UniversityKazan, Russia
S. N Grishin
Kazan State Medical UniversityKazan, Russia
A. Sh Gabdrakhmanov
Kazan Law Institute of the Ministry of Internal Affairs of RussiaKazan, Russia
A. E Khairullin
Kazan State Medical University; Kazan (Volga Region) Federal University
Email: khajrulli@yandex.ru
Kazan, Russia; Kazan, Russia
References
- Mukund K. and Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med., 12 (1), 1462 (2020). doi: 10.1002/wsbm.1462
- Abbracchio M. P. and Ceruti S. Roles of P2 receptors in glial cells: Focus on astrocytes. Purinergic Signal., 2 (4), 595–604 (2006). doi: 10.1007/s11302-006-9016-0
- Burnstock G. Purinergic signalling: pathophysiology and therapeutic potential. Keio J. Med., 62 (3), 63–73 (2013). doi: 10.2302/kjm.2013-0003-re
- Alexander S. P., Benson H. E., Faccenda E., Pawson A. J., Sharman J. L., Spedding M., Peters J. A., and Harmar A. J. The concise guide to pharmacology 2013/14: ligand-gated ion channels. Br. J. Pharmacol., 170 (8), 1582–1606 (2013). doi: 10.1111/bph.12446
- Маломуж А. И. и Никольский Е. Е. Неквантовая секреция ацетилхолина из двигательных нервных окончаний: молекулярный механизм, физиологическая роль, регуляция. Нейрофизиология, 39 (4/5), 352–363 (2007).
- Гришин С. Н. и Зиганшин А. У. Роль пуринов в нервно-мышечной передаче. Биол. мембраны, 30 (4), 243–252 (2013).
- Burnstock G. Purinergic signalling: It’s unpopular beginning, it’s acceptance and it’s exciting future. BioEssays, 34 (3), 218–225 (2012). doi: 10.1002/bies.201100130
- Жуков Е. К. Очерки по нервно-мышечной физиологии (Наука, Л., 1969).
- Гришин С. Н. и Зиганшин А. У. Особенности синаптической организации тонических скелетных мышечных волокон. Биол. мембраны, 31 (6), 392–400 (2014).
- Ogata T. An electron microscopic study on the red, white and intermediate muscle fibers of mouse. Acta Medicinae Okayama, 18, 271–280 (1964).
- Counter S. A., Hellstrand E., and Borg E. A histochemical characterization of muscle fiber types in the avian M. stapedius. Comp. Biochem. Physiol. A. Comp. Physiol., 86 (1), 185–187 (1987). doi: 10.1016/0300-9629(87)90299-4
- Reiser P. J., Stokes B. T., and Walters P. J. Effects of immobilization on the isometric contractile properties of embryonic avian skeletal muscle. Exp. Neurol., 99 (1), 59–72 (1988). doi: 10.1016/0014-4886(88)90127-6
- Close R. I. Dynamic properties of mammalian skeletal muscles. Physiol. Rev., 52 (1), 129–197 (1972). doi: 10.1152/physrev.1972.52.1.129
- Yamashita K., Yasuda H., Pines J., Yasumoto K., Nishitani H., Ohtsubo M., Hunter T., Sugimura T., and Nishimoto T. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J., 9 (13), 4331–4338 (1990). doi: 10.1002/j.1460-2075.1990.tb07882.x
- Denny-Brown D. The histological features of striped muscle in relation to its functional activity. Proc. Roy. Soc. B., 104, 371–411 (1929). doi: 10.1098/Rspb.1929.0014
- Huxley H. E. The mechanism of muscular contraction. Science, 164 (3886), 1356–1365 (1969). doi: 10.1126/science.164.3886.1356
- Gordon G. and Phillips C. G. Slow and rapid components in a flexor muscle. Q. J. Exp. Physiol. Cogn. Med. Sci., 38 (1), 35–45 (1953). doi: 10.1113/expphysiol.1953.sp001005
- Gauthier G. F. On the relationship of ultrastructural and cytochemical features of color in mammalian skeletal muscle. Z. Zellforsch. Mikrosk. Anat., 95 (3), 462–482 (1969). doi: 10.1007/BF00995217
- Morita S., Cassens R. G., and Briskey E. J. Histochemical localization of myoglobin in skeletal muscle of rabbit, pig and ox. J. Histochem. Cytochem., 18 (5), 364–366 (1970). doi: 10.1177/18.5.364
- Schmalbruch H. «Red» muscle fibres. Z. Zellforsch. Mikrosk. Anat., 119 (1), 120–146 (1971).
- Hudlická O. Resting and postcontraction blood flow in slow and fast muscles of the chick during development. Microvasc. Res., 1 (4), 390–402 (1969). doi: 10.1016/0026-2862(69)90017-x
- Валиуллин В. В., Исламов Р. Р., Валиуллина М. Е. и Полетаев Г. И. Нейротрофический контроль синтеза миозинов медленной мышцы морской свинки. Бюл. эксперим. биологии и медицины, 111 (2), 201–203 (1991).
- Мавринская Л. Ф. и Резвяков Н. П. Экстрафузальные мышечные волокна, их типы и биологическая характеристика. Арх. анатомии, гистологии и эмбриологии, 11, 23–40 (1978).
- Ogata T. and Yamasaki Y. Scanning electron-microscopic studies on the three-dimensional structure of mitochondria in the mammalian red, white and intermediate muscle fibers. Cell Tissue Res., 241 (2), 251–256 (1985). doi: 10.1007/BF00217168
- Bobyleva L. G., Uryupina T. A., Penkov N. V., Timchenko M. A., Ulanova A. D., Gabdulkhakov A. G., Vikhlyantsev I. M., and Bobylev A. G. The structural features of skeletal muscle titin aggregates. Molekuliarnaia biologiia, 58 (2), 314–324 (2024).
- Stein J. M. and Padykula H. A. Histochemical classification of individual skeletal muscle fibers of the rat. Am. J. Anatomy, 110, 103–123 (1962). doi: 10.1002/aja.1001100203
- Romanul F. C. Distribution of capillaries in relation to oxidative metabolism of skeletal muscle fibres. Nature, 201, 307–308 (1964). doi: 10.1038/201307a0
- Edman K. A. Double-hyperbolic force-velocity relation in frog muscle fibres. J. Physiol., 404, 301–321 (1988). doi: 10.1113/jphysiol.1988.sp017291
- Van der Laarse W. J., Maslam S., and Diegenbach P. C. Relationship between myoglobin and succinate dehydrogenase in mouse soleus and plantaris muscle fibres. Histochem. J., 17 (1), 1–11 (1985). doi: 10.1007/BF01003398
- Kelso T. B., Hodgson D. R., Visscher A. R., and Gollnick P. D. Some properties of different skeletal muscle fi-ber types: comparison of reference bases. J. Appl. Physiol., 62 (4), 1436–1441 (1987). doi: 10.1152/jappl.1987.62.4.1436
- Gorza L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J. Histochem. Cytochem., 38 (2), 257–265 (1990). doi: 10.1177/38.2.2137154
- Rice C. L., Cunningham D. A., Taylor A. W., and Paterson D. H. Comparison of the histochemical and contractile properties of human triceps surae. Eur. J. Appl. Physiol. Occup. Physiol., 58 (1–2), 165–170 (1988). doi: 10.1007/BF00636621
- Claflin D. R. and Faulkner J. A. Shortening velocity extrapolated to zero load and unloaded shortening velocity of whole rat skeletal muscle. J. Physiol., 359, 357–363 (1985). doi: 10.1113/jphysiol.1985.sp015589
- Asmussen G. and Maréchal G. Maximal shortening velocities, isomyosins and fibre types in soleus muscle of mice, rats and guinea-pigs. J. Physiol., 416, 245–254 (1989). doi: 10.1113/jphysiol.1989.sp017758
- Nguyen L. T. and Stephenson G. M. An electrophoretic study of myosin heavy chain expression in skeletal muscles of the toad Bufo marinus. J. Muscle Res. Cell Motil., 20 (7), 687–695 (1999). doi: 10.1023/a:1005560431865
- Rowlerson A. M. and Spurway N. C. Histochemical and immunohistochemical properties of skeletal muscle fibres from. Histochem. J., 20 (12), 657–673 (1988). doi: 10.1007/BF01002746
- Shall M. S. and Goldberg S. J. Extraocular motor units: type classification and motoneuron stimulation frequency-muscle unit force relationships. Brain Res., 587 (2), 291–300 (1992). doi: 10.1016/0006-8993(92)91010-c
- Vydevska-Chichova M., Mileva K., and Todorova R. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics. Gen. Physiol. Biophys., 24 (4), 381–396 (2005).
- Brooke M. H. and Kaiser K. K. Muscle fiber types: how many and what kind? Arch. Neurol., 23 (4), 369–379 (1970). doi: 10.1001/archneur.1970.00480280083010
- Staron R. S. and Pette D. Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibers. Histochemistry, 86 (1), 19–23 (1986). doi: 10.1007/BF00492341
- Ceccarelli C., Eusebi V., and Bussolati G. Fast and slow myosins as specific markers of muscle: an immunocytochemical study. Basic Appl. Histochem., 30 (2), 139–146 (1986).
- Rowlerson A., Scapolo P. A., and Mascarello F. Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle. J. Muscle Res. Cell Motil., 6 (5), 601–640 (1985). doi: 10.1007/BF00711917
- Schiaffino S. and Reggiani C. Fiber types in mammalian skeletal muscles. Physiol. Rev., 91 (4), 1447–1531 (2011). doi: 10.1152/physrev.00031.2010
- Reid B., Martinov V. N., Njå A., and Lømo T. Activity– Dependent Plasticity of Transmitter Release from Nerve Terminals in Rat Fast and Slow Muscles. J. Neurosci., 23 (28), 164–166 (2003). doi: 10.1523/JNEUROSCI.23-28-09340.2003
- Syme D. A. Functional properties of skeletal muscle. In: Fish Biomechanics (Acad. Press, 2005), pp. 179–240.
- Waerhaug O. Postnatal development of rat motor nerve terminals. Anat. Embryol. (Berl.), 185 (2), 115–123 (1992).
- Fahim M. A., Holley J. A., and Robbins N. Topographic comparison of neuromuscular junctions in mouse slow and fast twitch muscles. Neuroscience, 13, 227–235 (1984). doi: 10.1016/0306-4522(84)90273-2
- Sterz R., Pagala M., and Peper K. Postjunctional characteristics of the endplates in mammalian fast and slow muscles. Pflugers Archiv: Eur. J. Physiol., 398 (1), 48–54 (1983).
- Reid B., Slater C. R., and Bewick G. S. Synaptic vesicle dynamics in rat fast and slow motor nerve terminals. J. Neurosci., 19 (7), 2511–2521 (1999). doi: 10.1523/JNEUROSCI.19-07-02511.1999
- Kugelberg E. and Lindegren B. Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres. J. Physiol., 288, 285–300 (1979).
- Close R. Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J. Physiol., 204 (2), 331–346 (1969). doi: 10.1113/jphysiol.1969.sp008916
- Windisch A., Gundersen K., and Szabolcs M. J. Fast to slow transformation of denervated and electrically stimulated rat muscle. J. Physiol., 510 (2), 623–632 (1998). doi: 10.1111/j.1469-7793.1998.623bk.x
- Pette D. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve, 8 (8), 676–689 (1985). doi: 10.1002/mus.880080810
- Magazanik L. G., Antonov S. M., Lukomskaya N. Ya., Potap’eva N. N., Gmiro V. E., and Johnson J. Blockade of glutamateand cholinergic ion channels by amantadane derivatives. Neurosci. Behav. Physiol., 26 (1), 13–22 (1996). doi: 10.1007/BF02391151
- Nicholls J. G., Martin A. R., Wallace B. G., and Fuchs P. A. From neuron to brain (Sinauer Associates, Inc., 2001).
- Gundersen V., Storm-Mathisen J., and Bergersen L. H. Neuroglial transmission. Physiol. Rev., 95 (3), 695–726 (2015). doi: 10.1152/physrev.00024.2014
- Boehning D. and Snyder S. H. Novel neural modulators. Annu. Rev. Neurosci., 26, 105–131 (2003). doi: 10.1146/annurev.neuro.26.041002.131047
- Ciani S. and Edwards C. The effect of acetylcholine on neuromuscular transmission in the frog. J. Pharmacol. Exp. Ther., 142, 21–23 (1963).
- Parnas H., Segel L., Dudel J., and Parnas I. Autoreceptors, membrane potential and regulation of transmitter release. Trends Neurosci., 23, 60–68 (2000). doi: 10.1016/S0166-2236(99)01498-8
- Tomas J., Santafe M. M., Garcia N., Lanuza M. A., Tomas M., and Besalduch N. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular snynapse. Spain J. Neurosci. Res., 92, 543–554 (2014). doi: 10.1002/jnr.23346
- Bowman W. C., Prior I., and Marshall G. Presynaptic receptors in the neuromuscular junction. Ann. N.Y. Acad. Sci., 604, 69–81 (1990). doi: 10.1111/j.1749-6632.1990.tb31983.x
- Miller R. J. Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J., 4 (15), 3291–3299 (1990).
- Shen J. X. and Yakel J. L. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol. Sin., 6, 673–680 (2009). doi: 10.1038/aps.2009.64
- Arenson M. S. Muscarinic inhibition of quantal transmitter release from the magnesium-paralysed frog sartorius muscle. Neuroscience, 30, 827–836 (1989). doi: 10.1016/0306-4522(89)90174-7
- Slutsky I., Parnas H., and Parnas I. Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction. J. Physiol., 514, 769–782 (1999). doi: 10.1111/j.1469-7793.1999.769ad.x
- Samigullin D. V., Khaziev E. F., Kovyazina I. V., Bukharaeva E. A., and Nikolsky E. E. Muscarinic regulation of calcium transient and synaptic transmission in frog neuromuscular junction. Genes Cells, 9, 242–247 (2014).
- Kupchik Y. M., Rashkovan G., Ohana L., KerenRaifman T., Dascal N., and Parnas H. Molecular mechanisms that control initiation and termination of physiological depolarization-evoked transmitter release. Proc. Natl. Acad. Sci. USA., 105, 4435–4440 (2008). doi: 10.1073/pnas.0708540105
- Chen Y., Xiao L., and Qiu J. Neuronomodulation of excitable neurons. Neurosci. Bull., 40 (1), 103–112 (2024). doi: 10.1007/s12264-023-01095-w
- Маломуж А. И. и Никольский Е. Е. Неквантовое освобождение медиатора: миф или реальность? Успехи физиол. наук, 41, 27–43 (2010).
- Khakh B. S. and Henderson G. Modulation of fast synaptic transmission by presynaptic ligand-gated cation channels. J. Auton. Nerv. Syst., 81 (1–3), 110–121 (2000). doi: 10.1016/s0165-1838(00)00111-9
- Robertson S. J., Ennion S. J., Evans R. J., and Edwards F. A. Synaptic P2X receptors. Curr. Opin. Neurobiol., 11 (3), 378–386 (2001). doi: 10.1016/s0959-4388(00)00222-1
- Vizi E. S., Nitahara K., Sato K., and Sperlagh B. Stimulation-dependent release, breakdown, and action of endogenous ATP in mouse hemidiaphragm preparation: the possible role of ATP in neuromuscular transmission. J. Auton. Nerv. Syst., 81 (1–3), 278–284 (2000). doi: 10.1016/s0165-1838(00)00129-6
- Meriney S. D. and Grinnell A. D. Endogenous adenosine modulates stimulation-induced depression at the frog neuromuscular junction. J. Physiol., 443, 441–455 (1991). doi: 10.1113/jphysiol.1991.sp018843
- Redman R. S. and Silinsky E. M. ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. J. Physiol., 477 (1), 117–127 (1994). doi: 10.1113/jphysiol.1994.sp020176
- Ribeiro J. A. and Sebastiao A. M. On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J. Physiol., 384, 571–585 (1987). doi: 10.1113/jphysiol.1987.sp016470
- De Lorenzo S., Veggetti M., Muchnik S., and Losavio A. Presynaptic inhibition of spontaneous acetylcholine release mediated by P2Y receptors at the mouse neuromuscular junction. Neuroscience, 142 (1), 71–85 (2006). doi: 10.1016/j.neuroscience.2006.05.062
- Salgado A. I., Cunha R. A., and Ribeiro J. A. Facilitation by P(2) receptor activation of acetylcholine release from rat motor nerve terminals: interaction with presynaptic nicotinic receptors. Brain Res., 877 (2), 245–250 (2000). doi: 10.1016/s0006-8993(00)02679-2
- Giniatullin R. A. and Sokolova E. M. ATP and adenosine inhibit transmitter release at the frog neuromuscular junction through distinct presynaptic receptors. Br. J. Pharmacol., 124 (4), 839–844 (1998). doi: 10.1038/sj.bjp.0701881
- Sokolova E. M., Grishin S. N., Shakirzyanova A. V., Talantova V. M., and Giniatullin R. A. Distinct receptors and different transduction mechanisms for ATP and adenosine at the frog motor nerve endings. Eur. J. Neuroscience, 18 (5), 1254–1264 (2003). doi: 10.1046/j.1460-9568.2003.02835.x
- Ziganshin A. U., Khairullin A. E., Hoyle C. H. V., and Grishin S. N. Modulatory roles of ATP and adenosine in cholinergic neuromuscular transmission. Int. J. Mol. Sci., 21, 6423 (2020). doi: 10.3390/ijms21176423
- Khairullin A. E., Grishin S. N., and Ziganshin A. U. Presynaptic purinergic modulation of the rat neuro-muscular transmission. Curr. Iss. Mol. Biol., 45, 8492–8501 (2023). doi: 10.3390/cimb45100535
- Khairullin A. E., Ziganshin A. U., and Grishin S. N. The influence of hypothermia on purinergic synaptic modulation in the rat diaphragm. Biophysics, 65 (5), 858–862 (2020). doi: 10.1134/S0006350920050085
- Khairullin A. E., Teplov A. Y., Grishin S. N., Farkhutdinov A. M., and Ziganshin A. U. The thermal sensitivity of purinergic modulation of contractile activity of locomotor and respiratory muscles in mice. Biophysics, 64 (5), 812–817 (2019). doi: 10.1134/S0006350919050075
- Khairullin A. E., Grishin S. N., Gabdrahmanov A. I., and Ziganshin A. U. Effects of ATP on time parameters of contractility of rats' slow and fast skeletal muscles in normal and hypothermic conditions. Muscles, 2 (1), 23–35 (2023). doi: 10.3390/muscles2010003
- Khairullin A. E., Grishin S. N., Teplov A. Yu., Eremeev A. A., Baltina T. V., and Ziganshin A. U. A high calcium level-based model for identifying postsynaptic effects of ATP. Biophysics, 67 (6), 1007–1010 (2022). doi: 10.1134/S0006350922050086
- Khairullin A. E., Efimova D. V., Ivanova D. V., Grishin S. N., and Ziganshin A. U. On the role of ectonucleotidases in synaptic transmission. Thermolability of ATP metabolism. Biophysics, 68, 576–580 (2023). doi: 10.1134/S0006350923040097
- Khairullin A. E., Khabibrakhmanov A. N., Efimova D. V., Samigullin D. V., Grishin S. N., Mukhamedyarov M. A., and Ziganshin A. U. Subtypes of P2 receptors in rat neuromuscular junction. Bull. Exp. Biol. Med., 178 (5), 593–596 (2025). doi: 10.1007/s10517-025-06380-4
- Khairullin A. E., Teplov A. Y., Grishin S. N., and Ziganshin A. U. ATP causes contraction of denervated skeletal muscles. Biochemistry (Mosc.) Suppl. Ser. A Membr. Cell. Biol., 17 (1), 73–77 (2023). doi: 10.1134/s1990747823060065
- Khairullin A. E., Grishin S. N., and Ziganshin A. U. P2 receptor signaling in motor units in muscular dystrophy. Int. J. Mol. Sci., 24 (2), 1587 (2023). doi: 10.3390/ijms24021587
- Хайруллин А. Е., Ефимова Д. В., Теплов А. Ю., Хабибрахманов А. Н., Нагиев К. К., Гришин С. Н., Зиганшин А. У. и Мухамедьяров М. А. Нарушение P2рецептор-опосредованной модуляции сокращений скелетных мышц у трансгенных мышей с моделью бокового амиотрофического склероза. Бюл. эксперим. биологии и медицины, 179 (1), 26–30 (2025). doi: 10.47056/0365-9615-2025-179-1-26-30
- Khairullin A. E., Eremeev A. A., and Grishin S. N. Synaptic aspects of hypogravity motor syndrome. Biophysics, 64 (5), 828–835 (2019). doi: 10.1134/S0006350919050087
- Khairullina A. E., Efimova D. V., Markosyan V. A., Grishin S. N., Teplov A. Y., and Ziganshin A. U. The effect of acute unilateral denervation injury on purinergic signaling in the cholinergic synapse. Biophysics, 66, 483– 486 (2021). doi: 10.1134/S0006350921030064
- Khairullina A. E., Efimova D. V., Eremeev A. A., Sabirova D. E., Grishin S. N., and Ziganshin A. U. Effect of spinal cord injury on P2 signaling in the cholinergic synapse. J. Evol. Biochem. Physiol., 59 (3), 822–830. doi: 10.1134/S0022093023030158
- Khairullina A. E., Efimova D. V., Mukhamedyarov M. A., Baltin M. E., Baltina T. V., Grishin S. N., and Ziganshin A. U. Changes in contractile characteristics of rat skeletal muscles associated with P2-receptor activation after spinal cord transection. Ann. Clin. Exp. Neurol., 18 (2), 45–51 (2024). doi: 10.17816/ACEN.1012
- Khairullin A. E., Teplov A. Yu., Grishin S. N., and Ziganshin A. U. Purinergic mechanisms of adaptation of different types of motor units under conditions of allergic reorganization. Biophysics, 67 (6), 996–999 (2022). doi: 10.1134/S0006350922050098
- Fryer M. W. and Stephenson D. G. Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. J. Physiol., 493 (2), 357–370 (1996). doi: 10.1113/jphysiol.1996.sp021388
- Macdonald W. A. and Stephenson D. G. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue. J. Physiol., 573 (1), 187–198 (2006). doi: 10.1113/jphysiol.2006.105775
- Ribeiro J. A. and Walker J. Action of adenosine triphosphate on endplate potentials recorded from muscle fibres of the rat-diaphragm and frog sartorius. Br. J. Pharmacol., 49 (4), 724–725 (1973). doi: 10.1111/j.1476-5381.1973.tb08555.x
- Giniatullin A., Petrov A., and Giniatullin R. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction. Neuroscience, 285, 324–332 (2015). doi: 10.1016/j.neuroscience.2014.11.039
- Supinski G. S., Deal E. C. Jr., and Kelsen S. G. Comparative effects of theophylline and adenosine on respiratory skeletal and smooth muscle. Am. Rev. Respir. Dis., 133 (5), 809–813 (1986).
- Ziganshin A. U., Khairullin A. E., Teplov A. Y., Gabdrakhmanov A. I., Ziganshina L. E., Hoyle C. H. V., Ziganshin B. A., and Grishin S. N. The effects of ATP on the contractions of rat and mouse fast skeletal muscle. Muscle Nerve, 59, 509–516 (2019). doi: 10.1002/mus.26423
- Buckle P. J. and Spence I. The actions of adenosine and some analogues on evoked and potassium stimulated release at skeletal and autonomic neuromuscular junctions. Naunyn Schmiedebergs Arch. Pharmacol., 319 (2), 130–135 (1982). doi: 10.1007/BF00503925
- Ziganshin A. U., Khairullin A. E., Zobov V. V., Ziganshina L. E., Gabdrakhmanov A. I., Ziganshin B. A., and Grishin S. N. Effects of ATP and adenosine on contraction amplitude of rat soleus muscle at different temperatures. Muscle Nerve, 55 (3), 417–423 (2017). doi: 10.1002/mus.25263
- Sebastião A. M. and Ribeiro J. A. On the adenosine receptor and adenosine inactivation at the rat diaphragm neuromuscular junction. Br. J. Pharmacol., 94 (1), 109–120 (1988). doi: 10.1111/j.1476-5381.1988.tb11505.x
- Voss A. A. Extracellular ATP inhibits chloride channels in mature mammalian skeletal muscle by activating P2Y1 receptors. J. Physiol., 587 (23), 5739–5752 (2009). doi: 10.1113/jphysiol.2009.179275
Supplementary files



