Bispectral Analysis of Electroencephalogram Using Neural Networks to Assess the Depth of Anesthesia


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article reviews algorithms of bispectral analysis of the electroencephalogram (EEG) signal of a patient to determine the level of brain activity during sedative-assisted treatment. The proposed algorithms are based on construction of multiple convolutions of complex amplitudes of the EEG signal, combined into so-called bispectra. Artificial neural networks (ANNs) are used to perform bispectral analysis and form a conclusion on the degree of patient brain activity. The article also shows individual results of functioning of the algorithms on real EEG signals and compares these results with expert judgments of doctors (anesthesiologists and neurophysiologists).

Sobre autores

N. Lavrov

Triton Electronics LLC; Krasovsky Institute of Mathematics and Mechanics; Ural Federal University

Autor responsável pela correspondência
Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg; Ekaterinburg; Ekaterinburg

V. Bulaev

Triton Electronics LLC

Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg

E. Solouhin

Triton Electronics LLC

Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg

S. Taratuhin

Triton Electronics LLC

Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg

A. Chistyakov

Triton Electronics LLC

Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016