Bispectral Analysis of Electroencephalogram Using Neural Networks to Assess the Depth of Anesthesia
- Autores: Lavrov N.G.1,2,3, Bulaev V.V.1, Solouhin E.N.1, Taratuhin S.A.1, Chistyakov A.V.1
-
Afiliações:
- Triton Electronics LLC
- Krasovsky Institute of Mathematics and Mechanics
- Ural Federal University
- Edição: Volume 49, Nº 6 (2016)
- Páginas: 380-384
- Seção: Article
- URL: https://journal-vniispk.ru/0006-3398/article/view/234297
- DOI: https://doi.org/10.1007/s10527-016-9571-9
- ID: 234297
Citar
Resumo
The article reviews algorithms of bispectral analysis of the electroencephalogram (EEG) signal of a patient to determine the level of brain activity during sedative-assisted treatment. The proposed algorithms are based on construction of multiple convolutions of complex amplitudes of the EEG signal, combined into so-called bispectra. Artificial neural networks (ANNs) are used to perform bispectral analysis and form a conclusion on the degree of patient brain activity. The article also shows individual results of functioning of the algorithms on real EEG signals and compares these results with expert judgments of doctors (anesthesiologists and neurophysiologists).
Palavras-chave
Sobre autores
N. Lavrov
Triton Electronics LLC; Krasovsky Institute of Mathematics and Mechanics; Ural Federal University
Autor responsável pela correspondência
Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg; Ekaterinburg; Ekaterinburg
V. Bulaev
Triton Electronics LLC
Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg
E. Solouhin
Triton Electronics LLC
Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg
S. Taratuhin
Triton Electronics LLC
Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg
A. Chistyakov
Triton Electronics LLC
Email: lavrov_ng@mail.ru
Rússia, Ekaterinburg
Arquivos suplementares
