Peculiarities of microsporogenesis and pollen formation in Helianthus occidentalis (Asteraceae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Helianthus occidentalis is poorly studied embryologically, but it may be very useful in breeding due to its high resistance to pests and diseases. Significant variation in the viability and size of pollen grains in the samples of different origin is characteristic for this species. No essential deviations in the anther development were noticed before microsporogenesis start. Further, the following anomalies were found: late chromosomes outside of the spindle; dyads with one nucleus being degenerating on anaphase I; formation of micro- and macronuclei during the second division of meiosis; degeneration of several nuclei within a tetrad; formation of triads, dyads and monads of microspores instead of tetrads. We have noticed significant heterogeneity of pollen grains by size. Deformed and compressed ones were noticed, as well as those with the structure of dyad or tetrad of cells within their wall. There is some data in literature on similar anomalies both in plants of other taxa and in Helianthus plants, mainly of the hybrid origin. One of the supposed reasons of the multiple anomalies in development and deterioration of pollen quality in the sample of H. occidentalis under investigation is a possible introgression of chromosomes from one of closely related diploid species as a result of hybridization that took place in the natural population. The conducted study once again confirms the need for cytological analysis to identify potential pollinating plants for sunflower breeding.

About the authors

A. A. Babro

Kovarov Botanical Institute RAS

Author for correspondence.
Email: ABabro@binran.ru
Russian Federation, Prof. Popov Str., 2, Saint-Petersburg, 197022

O. N. Voronova

Kovarov Botanical Institute RAS

Email: o_voronova@binran.ru
Russian Federation, Prof. Popov Str., 2, Saint-Petersburg, 197022

References

  1. Arias, de M.M., Gao L., Sherwood D.A., Dwivedi K.K., Price B.J., Jamison M., Kowallis B.M., Carman J.G. 2020. Whether gametophytes are reduced or unreduced in Angiosperms might be determined metabolically. – Genes 11(12): 1449. https://doi.org/10.3390/genes11121449
  2. Atlagic J. 1996. Cytogenetic studies in hexaploid Helianthus species and their F1 hybrids with cultivated sunflower, H. annuus. – Plant Breeding. 115: 257–260. https://doi.org/10.1111/j.1439-0523.1996.tb00913.x
  3. Atlagic J. 2000. Cytogenetic study of Helianthus rigidus and its F1 and BC1F1 hybrids with the cultivated sunflower, Helianthus annuus. – Genetika. 32(1): 63–69.
  4. Atlagic J. 2004. Roles of interspecific hybridization and cytogenetic studies in sunflower breeding. – Helia. 27(41): 1–24. https://doi.org/10.2298/HEL0441001A
  5. Atlagic J., Dozet B., Skoric D. 1995. Meiosis and pollen grain viability in Helianthus mollis, Helianthus salicifolius, Helianthus maximiliani and their F1 hybrids with cultivated sunflower. – Euphytica. 81: 259–263. https://doi.org/10.1007/BF00025615
  6. Atlagić J., Panković D., Pekanović A. 2003. Backcrosses in interspecific hybridization in sunflower. – Genetika. 35(3): 187–197. https://doi.org/10.2298/GENSR0303187A
  7. Atlagić J., Škoric D. 1999. Cytogenetic study of Helianthus laevigatus and its F1 and BC1F1 hybrids with cultivated sunflower, Helianthus annuus. – Plant Breeding. 118: 555–559. https://doi.org/10.1046/j.1439-0523.1999.00423.x
  8. Binsfeld P.C., Wingender R., Schnabl H. 2001. Cytogenetic analysis of interspecific sunflower hybrids and molecular evaluation of their progeny. – Theoretical and Applied Genetics. 102: 1280–1285. https://doi.org/10.1007/s001220000517
  9. Babro A.A., Voronova O.N. 2018. Development of male reproductive structures in Helianthus ciliaris and H. tuberosus (Asteraceae). – Bot. Zhurn. 103(9): 1093–1108 (In Russ.). https://doi.org/10.7868/S0006813618090028
  10. Babro A.A., Voronova O.N. 2023. Overview of techniques to prepare light microscopic mounts of Helianthus (Asteraceae) reproductive structures. – Bot. Zhurn. 108(10): 917–938 (In Russ.). https://doi.org/10.31857/S0006813623100022
  11. Dziubenko L.K. 1965. Peculiarities of male and female gametophyte development in Helianthus tuberosus L. – Ukr. Bot. Zhurn. 22(1): 43–53 (In Ukr.).
  12. The families and genera of vascular plants. Vol. 8. 2007. Berlin. 636 p.
  13. Georgieva-Todorova Y. 1965. Results of the hybridization of the culture sunflower with some species of the genus Helianthus. – Symposium on interspecific hybridization in plants. Sofia, November 10th to 21th 1964. Sofia. P. 239–253 (In Russ.).
  14. Georgieva-Todorova J. 1993. Interspecific Hybridization and its Application in Sunflower Breeding. – Biotechnology & Biotechnological Equipment. 7(4): 153–157. https://doi.org/10.1080/13102818.1993.10818729
  15. Jackson R.C., Guard A.T. 1957. Natural and artificial hybridization between Helianthus mollis and H. occidentalis. – Amer. Midland Naturalist. 58(2): 422–433. https://doi.org/10.2307/2422625
  16. Heiser C.B., Smith D.M. 1954. New chromosome numbers in Helianthus and related genera (Compositae). – Proc. Ind. Acad. Sci. 64: 250–253.
  17. Heiser C.B., Martin W.C., Smith D.M. 1962. Species crosses in Helianthus: I. Diploid species. – Brittonia. 14(2): 137–147. https://doi.org/10.2307/2805218
  18. Heiser C.B., Smith D.M., Clevenger S.B., Martin W.C. 1969. The North American Sunflowers (Helianthus). – Memoirs of the Torrey Botanical Club. 22(3): 1–218.
  19. Helianthus occidentalis Riddell. 2024. The International Plant Names Index and World Checklist of Vascular Plants 2024. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:315076-2 (accessed 04.03.2024)
  20. Markin N.V., Tikhonova M.A., Gavrilova V.A., Usatov A.V. 2011. Polymorfizm genomnoy DNK mnogoletnikh dikorastushchikh vidov podsolnechnika (Helianthus L.). [Polymorphism of genomic DNA in perennial wild species of sunflower (Helianthus L.)]. – Bulletin of higher education institutes. North Caucasus region. Natural sciences. 2: 38–41 (In Russ.).
  21. Ricci G.C.L., Silva N., Pagliarini M.S., Scapim C.A. 2007. Microsporogenesis in inbred line of popcorn (Zea mays L.). – Genetics and Molecular Research. 6(4): 1013–1018.
  22. Risso-Pascotto C., Pagliarini M.S., Valle C.B., do. 2005. Multiple spindles and cellularization during microsporogenesis in an artificially induced tetraploid accession of Brachiaria ruziziensis (Gramineae). – Plant Cell Reports. 23: 522–527. https://doi.org/10.1007/s00299-004-0867-y
  23. Schilling E.E., Heiser C.B. 1981. Infrageneric Classification of Helianthus (Compositae). – Taxon. 30(2): 393–403. https://doi.org/10.2307/1220139
  24. Stipanovic R.D., O’Brien D.H., Rogers C.E., Thompson T.E. 1979. Diterprnoid acids, (-)-cis- and (-)-trans-Ozic Acid, in Wild Sunflower, Helianthus occidentalis. – Journal of Agricultural and Food Chemistry. 27(2): 458–459 https://doi.org/10.1021/jf60222a027
  25. Sujatha M. 2006. Wild Helianthus species used for broadening the genetic base of cultivated sunflower in India. – Helia. 29 (44): 77–86. https://doi.org/10.2298/HEL0644077S
  26. Tang Q., Feng Y., Han X., Zheng M., Rong T. 2009. Study on haploid inducing and its meiotic abnormality in maize. – Agricultural Sciences in China. 8(10): 1159–1165. https://doi.org/10.1016/S1671-2927(08)60325-9
  27. Tatintseva S.S. 1971. The development of male gametophyton of Helianthus tuberosus L. – Izvestiya Akademii nauk Turkmenskoy SSR. Seriya biologicheskikh nauk. 1: 14–21 (In Russ.).
  28. Teryokhin E.S., Batygina T.B., Shamrov I.I. 1993. The classification of microsporangium wall types in angiosperms. Terminology and concepts. – Bot. Zhurn. 78(6): 16–24 (In Russ.).
  29. Tikhomirov V.T., Chiryaev P.V. 2005 Sources of resistance to diseases in original material of sunflower. – Helia. 28(42): 101–106. https://doi.org/10.2298/HEL0542101T
  30. Toderich K.N. 1988. Embryologiya podsolnechnika (Helianthus annuus, H. rigidus i drugiye) [Embryology of sunflower (Helianthus annuus, H. rigidus and others)]: Diss. … cand. sci. Leningrad. 256 p. (In Russ.).
  31. Voronova O.N., Babro A.A. 2018 Early stages of formation of female reproductive structures in Helianthus ciliaris and H. tuberosus (Asteraceae). – Bot. Zhurn. 103(4): 488–504 (In Russ.). https://doi.org/10.1134/S0006813618040051
  32. Voronova O.N., Babro A.A. 2019. Apospory in Helianthus ciliaris DC. (Asteraceae). – Int. J. Plant Repr. Biol. 11(1): 66–69. https://doi.org/10.14787/ijprb.201911.1
  33. Voronova O.N., Babro A.A. 2021. Formation of embryo sac, development of ovule and seed Helianthus ciliaris and H. tuberosus (Asteraceae). – Bot. Zhurn. 106(3): 50–65 (In Russ.). https://doi.org/10.31857/S0006813621030091
  34. Voronova O.N., Babro A.A., Lyubchenko A.V. 2023. Comparative embryological study of some Jerusalem artichoke (Helianthus tuberosus L.) accessions with different seed-setting ability from the VIR collection. – Proceedings on applied botany, genetics and breeding. 184(2): 190–203 (In Russ.). https://doi.org/10.30901/2227-8834-2023-2-190-203
  35. Voronova O.N., Gavrilova V.A. 2019. Quantitative and qualitative analysis of sunflower pollen (Helianthus L.) and its use in breeding work. – Proceedings of applied botany, genetics and breeding. 180(1): 95–104 (In Russ.). https://doi.org/10.30901/2227-8834-2019-1-95-104
  36. Voronova O.N., Ryazanova M.K. 2022. Embryology of Helianthus maximiliani (Asteraceae). – Bot. Zhurn. 107(11): 1083–1099 (In Russ.). https://doi.org/10.31857/S0006813622110084
  37. Yankova-Tsvetkova E., Yurukova-Grancharova P., Baldjiev G., Vitkova A. 2016. Embryological features, pollen and seed viability of Arnica montana (Asteraceae) – a threatened endemic species in Europe. – Acta Botanica Croatica. 75(1): 39–44. https://doi.org/10.1515/botcro-2016-0014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».