


Vol 55, No 1 (2017)
- Year: 2017
- Articles: 8
- URL: https://journal-vniispk.ru/0010-9525/issue/view/9176
Article
Study of the magnetospheres of active regions on the sun by radio astronomy techniques
Abstract
In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere–corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.



Neutral surfaces of coronal magnetic field and solar filaments
Abstract
The shape of solar filaments is compared with the projection of parts of the neutral surface of the coronal magnetic field within a certain range of heights at different aspects of observation due to the rotation of the Sun. Neutral surfaces are calculated in the potential approximation from the photospheric data. The comparison shows that the material of filaments is concentrated mainly near the neutral surface of the potential field. The traces of the neutral surface section by the horizontal plane serve as polarity inversion lines (PILs) of the vertical field at the given height. In projection onto the disk, a lower edge of the filament with the intermediate barbs protruding on each side is delineated by the PIL at the low height, while an upper edge touches the high-height PIL. All material of the filament is enclosed in the space between these two lines. Although in reality the magnetic field structure near filaments differs very strongly from the potential field structure, their neutral surfaces can be similar and close, especially at low heights. This fact is probably the cause of the observed correlation. It can be used to determine the height of the upper edge of filaments above the photosphere in the case of observations only on the disk.



Possible causes of the discrepancy between the predicted and observed parameters of high-speed solar wind streams
Abstract
We have considered the possible causes of discrepancies between the predicted and observed at 1 AU parameters of the recurrent solar wind (SW) streams in the maximum of the 24th solar cycle. These discrepancies have been observed in both the SW velocity profile and the SW stream arrival time, as well as in the absence of the expected high-speed SW stream. The degree of discrepancy depends on the model used for the SW prediction; however, in some cases, different prediction methods provide a similar discrepancy with the observed SW parameters at 1 AU. For several cases, we show that the probable cause of the discrepancies can be a deflection of the high-speed SW stream from the radial direction due to the interaction with the transient SW streams at certain configuration of the magnetic fields of high-speed and transient SW sources in the solar corona.



Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution
Abstract
According to the data of the BMSW/SPEKTR-R instrument, which measured the density and velocity of solar wind plasma with a record time resolution, up to ~3 ×10–2 s, the structure of the front of interplanetary shocks has been investigated. The results of these first investigations were compared with the results of studying the structure of the bow shocks obtained in previous years. A comparison has shown that the quasi-stationary (averaged over the rapid oscillations) distribution of plasma behind the interplanetary shock front was significantly more inhomogeneous than that behind the bow-shock front, i.e., in the magnetosheath. It has also been shown that, to determine the size of internal structures of the fronts of quasi-perpendicular (θBN > 45°) shocks, one could use the magnetic field magnitude, the proton density, and the proton flux of the solar wind on almost equal terms. A comparison of low Mach (МА < 2), low beta (β1 < 1) fronts of interplanetary and bow shocks has shown that the dispersion of oblique magnetosonic waves plays an essential role in their formation.



Structure of current and plasma in current sheets depending on the conditions of sheet formation
Abstract
The structure of current sheets created under laboratory conditions is characterized by a large variety, which depends substantially on the conditions under which the sheet if formed. In this work, we present the results of an experimental study of the structure and evolution of current sheets that were formed in magnetic configurations with a singular line of the X type. It has been shown that the change in the transverse magnetic field gradient, the strength of the longitudinal magnetic field, and the mass of the ions in plasma makes it possible to significantly vary the main parameters of the current sheets. This offers the challenges of using laboratory experimental results for analyzing and simulating the cosmophysical processes.



Heating and acceleration of charged particles during magnetic dipolarizations
Abstract
In this paper, we analyzed the thermal and energy characteristics of the plasma components observed during the magnetic dipolarizations in the near tail by the Cluster satellites. It was previously found that the first dipolarization the ratio of proton and electron temperatures (Tp/Te) was ~6–7. At the time of the observation of the first dipolarization front Tp/Te decreases by up to ~3–4. The minimum value Tp/Te (~2.0) is observed behind the front during the turbulent dipolarization phase. Decreases in Tp/Te observed at this time are associated with an increase in Te, whereas the proton temperature either decreases or remains unchanged. Decreases of the value Tp/Te during the magnetic dipolarizations coincide with increase in wave activity in the wide frequency band up to electron gyrofrequency fce. High-frequency modes can resonantly interact with electrons causing their heating. The acceleration of ions with different masses up to energies of several hundred kiloelectron-volts is also observed during dipolarizations. In this case, the index of the energy spectrum decreases (a fraction of energetic ions increases) during the enhancement of low-frequency electromagnetic fluctuations at frequencies that correspond to the gyrofrequency of this ion component. Thus, we can conclude that the processes of the interaction between waves and particles play an important role in increasing the energy of plasma particles during magnetic dipolarizations.



Dynamics of debye-scale nonstationary plasma structures in the region of auroral field-aligned currents
Abstract
We consider the formation of small-scale nonstationary plasma structures in the region of relatively strong field-aligned electric currents. The formation of these structures has been shown to be associated with the density instability developed when the current velocity exceeds a critical value. The conditions for the development of this instability can be most favorable in the region of low-density plasma. Numerical calculations have been performed for the initial nonlinear stage of the structure development. The main parameters of the structure, i.e., the times of its formation and destruction, spatial scales, and electric field, have been estimated. The features of the structures are consistent with the existing data from space experiments in the region of auroral field-aligned currents of the Earth.



Dynamics of electron fluxes in the slot between radiation belts in November–December 2014 according to data of the Vernov satellite
Abstract
The variations in the spatial structure and time in electron fluxes with E = 235–300 keV in the slot region (2 < L < 3) between the radiation belts in the period of November 1, 2014 through December 8, 2014 during weak and moderate geomagnetic disturbances (Kp < 4, Dst >–60 nT) are analyzed based on the data of the RELEC complex on board the Vernov satellite (the height and inclination of the orbit are from 640 to 830 km and 98.4°, respectively). Irregular increases in the fluxes of such electrons and formation of a local maximum at L ~ 2.2–3.0 were observed. It has been shown that the intensity of this maximum is inversely proportional to the L value and grows with an increase in the geomagnetic activity level. New features discovered for the first time in the dynamics of radiation belt electrons manifest in the variations in the local structure and dynamics of fluxes of subrelativistic electrons in the slot region.


