Optimal processes in the model of two-sector economy with an integral utility function
- Авторлар: Kiselev Y.N.1, Orlov M.V.1, Orlov S.M.1
-
Мекемелер:
- Moscow State University
- Шығарылым: Том 53, № 2 (2017)
- Беттер: 248-262
- Бөлім: Control Theory
- URL: https://journal-vniispk.ru/0012-2661/article/view/154287
- DOI: https://doi.org/10.1134/S0012266117020100
- ID: 154287
Дәйексөз келтіру
Аннотация
An infinite-horizon two-sector economy model with a Cobb–Douglas production function is studied for different depreciation rates, the utility function being an integral functional with discounting and a logarithmic integrand. The application of the Pontryagin maximum principle leads to a boundary value problem with special conditions at infinity. The presence of singular modes in the optimal solution complicates the search for a solution to the boundary value problem of the maximum principle. To construct the solution to the boundary value problem, the singular modes are written in an analytical form; in addition, a special version of the sweep algorithm in continuous form is proposed. The optimality of the extremal solution is proved.
Авторлар туралы
Yu. Kiselev
Moscow State University
Хат алмасуға жауапты Автор.
Email: kiselev@cs.msu.su
Ресей, Moscow, 119992
M. Orlov
Moscow State University
Email: kiselev@cs.msu.su
Ресей, Moscow, 119992
S. Orlov
Moscow State University
Email: kiselev@cs.msu.su
Ресей, Moscow, 119992
Қосымша файлдар
