Continual version of the Perron effect of change of values of the characteristic exponents
- Авторы: Izobov N.A.1, Il’in A.V.2
-
Учреждения:
- Institute of Mathematics
- Lomonosov Moscow State University
- Выпуск: Том 53, № 11 (2017)
- Страницы: 1393-1405
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154610
- DOI: https://doi.org/10.1134/S0012266117110015
- ID: 154610
Цитировать
Аннотация
We prove the existence of a perturbed two-dimensional system of ordinary differential equations such that its linear approximation has arbitrarily prescribed negative characteristic exponents, the perturbation is of arbitrarily prescribed higher order of smallness in a neighborhood of the origin, all of its nontrivial solutions are infinitely extendible to the right, and the whole set of their Lyapunov exponents is contained in the positive half-line, is bounded, and has positive Lebesgue measure. In the general case, we also obtain explicit representations of the exponents of these solutions via their initial values.
Об авторах
N. Izobov
Institute of Mathematics
Автор, ответственный за переписку.
Email: izobov@im.bas-net.by
Белоруссия, Minsk, 220072
A. Il’in
Lomonosov Moscow State University
Email: izobov@im.bas-net.by
Россия, Moscow, 119991
Дополнительные файлы
