Degenerate boundary conditions for the diffusion operator
- 作者: Akhtyamov A.M.1,2
-
隶属关系:
- Bashkir State University
- Mavlyutov Institute of Mechanics, Ufa Scientific Center of the Russian Academy of Sciences
- 期: 卷 53, 编号 11 (2017)
- 页面: 1515-1518
- 栏目: Short Communications
- URL: https://journal-vniispk.ru/0012-2661/article/view/154630
- DOI: https://doi.org/10.1134/S0012266117110143
- ID: 154630
如何引用文章
详细
We describe all degenerate two-point boundary conditions possible in a homogeneous spectral problem for the diffusion operator. We show that the case in which the characteristic determinant is identically zero is impossible for the nonsymmetric diffusion operator and that the only possible degenerate boundary conditions are the Cauchy conditions. For the symmetric diffusion operator, the characteristic determinant is zero if and only if the boundary conditions are falsely periodic boundary conditions; the characteristic determinant is identically a nonzero constant if and only if the boundary conditions are generalized Cauchy conditions.
作者简介
A. Akhtyamov
Bashkir State University; Mavlyutov Institute of Mechanics, Ufa Scientific Center of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: AkhtyamovAM@mail.ru
俄罗斯联邦, Ufa, 450076; Ufa, 450054
补充文件
