On One Method for Studying the Cauchy Problem for a Singularly Perturbed Nonlinear First-Order Differential Operator
- Авторлар: Bukzhalev E.E.1
-
Мекемелер:
- Moscow State University
- Шығарылым: Том 54, № 2 (2018)
- Беттер: 152-164
- Бөлім: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154682
- DOI: https://doi.org/10.1134/S0012266118020027
- ID: 154682
Дәйексөз келтіру
Аннотация
A sequence that converges to the solution of the Cauchy problem for a singularly perturbed nonlinear first-order differential operator has been constructed. The sequence is asymptotic in the sense that any deviation (in the norm of the space of continuous functions) of its nth element from the problem solution is proportional to the (n + 1)th power of the perturbation parameter. The possibility has been shown for applying the sequence to validating an asymptotics obtained with the method of boundary functions.
Авторлар туралы
E. Bukzhalev
Moscow State University
Хат алмасуға жауапты Автор.
Email: bukzhalev@mail.ru
Ресей, Moscow, 119991
Қосымша файлдар
