Complete Description of the Lyapunov Spectra of Families of Linear Differential Systems Whose Dependence on the Parameter Is Continuous Uniformly on the Time Semiaxis
- Authors: Barabanov E.A.1, Bykov V.V.2, Karpuk M.V.1
-
Affiliations:
- Institute of Mathematics
- Lomonosov Moscow State University
- Issue: Vol 54, No 12 (2018)
- Pages: 1535-1544
- Section: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154887
- DOI: https://doi.org/10.1134/S0012266118120017
- ID: 154887
Cite item
Abstract
We consider families of n-dimensional (n ≥ 2) linear differential systems on the time semiaxis with parameter varying in a metric space. For such families continuously depending on the parameter in the sense of uniform convergence on the time semiaxis, we completely describe the spectra of their Lyapunov exponents as vector functions of the parameter.
About the authors
E. A. Barabanov
Institute of Mathematics
Author for correspondence.
Email: bar@im.bas-net.by
Belarus, Minsk, 220072
V. V. Bykov
Lomonosov Moscow State University
Email: bar@im.bas-net.by
Russian Federation, Moscow, 119991
M. V. Karpuk
Institute of Mathematics
Email: bar@im.bas-net.by
Belarus, Minsk, 220072
Supplementary files
