Monotone Finite-Difference Schemes of Second-Order Accuracy for Quasilinear Parabolic Equations with Mixed Derivatives


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the initial-boundary value problem for quasilinear parabolic equation with mixed derivatives and an unbounded nonlinearity. We construct unconditionally monotone and conservative finite-difference schemes of the second-order accuracy for arbitrary sign alternating coefficients of the equation. For the finite-difference solution, we obtain a two-sided estimate completely consistent with similar estimates for the solution of the differential problem, and also obtain an important a priori estimate in the uniform C-norm. These estimates are used to prove the convergence of finite-difference schemes in the grid L2-norm. All theoretical results are obtained under the assumption that some conditions imposed only on the input data of the differential problem are satisfied.

Sobre autores

P. Matus

Institute of Mathematics; John Paul II Catholic University of Lublin

Autor responsável pela correspondência
Email: matus@im.bas-net.by
Belarus, Minsk, 220072; Lublin, 20-950

L. Hieu

University of Economics - The University of Danang

Autor responsável pela correspondência
Email: hieulm@due.edu.vn
Vietnã, Danang

D. Pylak

John Paul II Catholic University of Lublin

Autor responsável pela correspondência
Email: dorotab@kul.pl
Polônia, Lublin, 20-950

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2019