Regularized Traces of the Airy Operator Perturbed by the Dirac Delta Function
- 作者: Pechentsov A.S.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 55, 编号 4 (2019)
- 页面: 483-489
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154988
- DOI: https://doi.org/10.1134/S0012266119040050
- ID: 154988
如何引用文章
详细
We consider the Sturm-Liouville operator generated in the space L2[0, +∞) by the expression la,b:= −d2/dx2 + x + aδ(x ™ b) and the boundary condition y(0) = 0, where δ is the Dirac delta function and a and b are positive numbers. Regularized trace formulas for this operator are obtained, and some identities for the eigenvalues are found. In particular, we prove that the sum of reciprocal squares of zeros of the Airy function Ai is 4π2/(31/3Γ4(1/3)), where Γ is the Euler gamma function.
作者简介
A. Pechentsov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: pechentsovas@rambler.ru
俄罗斯联邦, Moscow, 119991
补充文件
