🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Asymptotic Analysis of a Nonlinear Eigenvalue Problem Arising in the Waveguide Theory


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a nonlinear eigenvalue problem for a system of ordinary differential equations arising in the waveguide theory. The nonlinearity is characterized by two nonnegative parameters α and β. For α = β = 0, we arrive at a linear problem that has finitely many (positive) eigenvalues. It is proved that for α > 0 and β ≥ 0 there exist infinitely many positive eigenvalues; their asymptotics is indicated. It is also proved that for α = 0 and β > 0 there exist finitely many eigenvalues. A comparison theorem for the eigenvalues is obtained for α, βs > 0. It is shown that perturbation theory methods cannot be used to study the nonlinear problem completely.

About the authors

D. V. Valovik

Penza State University

Author for correspondence.
Email: dvalovik@mail.ru
Russian Federation, Penza, 440026

S. V. Tikhov

Penza State University

Author for correspondence.
Email: tik.stanislav2015@yandex.ru
Russian Federation, Penza, 440026

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Inc.