Approximate Estimates for a Differential Operator in a Weighted Hilbert Space
- Авторлар: Kussainova L.K.1, Sultanaev Y.T.2, Murat G.K.1
-
Мекемелер:
- Gumilyov Eurasian National University
- Akmulla Bashkir State Pedagogical University
- Шығарылым: Том 55, № 12 (2019)
- Беттер: 1589-1597
- Бөлім: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155292
- DOI: https://doi.org/10.1134/S0012266119120061
- ID: 155292
Дәйексөз келтіру
Аннотация
We consider the self-adjoint operator L (the Friedrichs extension) associated with the closable form \({a_m}[u,f] = \int_\Omega {\left( {\sum\nolimits_{\left| \alpha \right| = m} {{\rho ^2}(x){D^\alpha }u\overline {{D^\alpha }f} + v_m^2(x)u\bar f} } \right)dx}\) in the space L2,ω where Ω ⊂ ℝn is a domain, \(f,u \in C_0^\infty (\Omega )\), and m ∈ ℕ. Here vs(x) = ρ(x)h-s(x), s > 0, and the positive functions ρ(·) and h(·) satisfy some special conditions. The space L2,ω is a weighted Hilbert space with a locally integrable weight ω(x) positive almost everywhere in Ω. For s > 0 and 1 < p < ∞, we introduce the weighted space of potentials \(H_p^s(\rho ,{v_s})\). For s = m ∈ ℕ and p = 2, the space \(H_2^m(\rho ,{v_m})\) is the weighted Sobolev space \(H_2^m(\rho ,{v_m})\) with the equivalent norm \(\left\| {f;W_2^m(\rho ,{v_m})} \right\| = \sqrt {{a_m}[f,f]}\). Descriptions are given of the interpolation spaces Hs obtained by the complex and real interpolation methods from the pair \(\left\{ {H_p^{{s_0}}(\rho ,{v_{{s_0}}}), H_p^{{s_1}}(\rho ,{v_{{s_1}}})} \right\}\), 0 < s0 < s1. Estimates are derived for the linear widths and Kolmogorov widths of the compact sets \(\mathcal{F} = B{H_s}\bigcap {{L^{ - 1}}(B{L_{2,\omega }})}\), s > 0 (where BX is the unit ball in a space X).
Авторлар туралы
L. Kussainova
Gumilyov Eurasian National University
Хат алмасуға жауапты Автор.
Email: leili2006@mail.ru
Қазақстан, Nur-Sultan, 010008
Ya. Sultanaev
Akmulla Bashkir State Pedagogical University
Хат алмасуға жауапты Автор.
Email: sultanaevyt@gmail.com
Ресей, Ufa, Bashkortostan, 450008
G. Murat
Gumilyov Eurasian National University
Хат алмасуға жауапты Автор.
Email: gulnar_18.01@mail.ru
Қазақстан, Nur-Sultan, 010008
Қосымша файлдар
