Approximate Estimates for a Differential Operator in a Weighted Hilbert Space


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the self-adjoint operator L (the Friedrichs extension) associated with the closable form \({a_m}[u,f] = \int_\Omega {\left( {\sum\nolimits_{\left| \alpha \right| = m} {{\rho ^2}(x){D^\alpha }u\overline {{D^\alpha }f} + v_m^2(x)u\bar f} } \right)dx}\) in the space L2,ω where Ω ⊂ ℝn is a domain, \(f,u \in C_0^\infty (\Omega )\), and m ∈ ℕ. Here vs(x) = ρ(x)h-s(x), s > 0, and the positive functions ρ(·) and h(·) satisfy some special conditions. The space L2,ω is a weighted Hilbert space with a locally integrable weight ω(x) positive almost everywhere in Ω. For s > 0 and 1 < p < ∞, we introduce the weighted space of potentials \(H_p^s(\rho ,{v_s})\). For s = m ∈ ℕ and p = 2, the space \(H_2^m(\rho ,{v_m})\) is the weighted Sobolev space \(H_2^m(\rho ,{v_m})\) with the equivalent norm \(\left\| {f;W_2^m(\rho ,{v_m})} \right\| = \sqrt {{a_m}[f,f]}\). Descriptions are given of the interpolation spaces Hs obtained by the complex and real interpolation methods from the pair \(\left\{ {H_p^{{s_0}}(\rho ,{v_{{s_0}}}), H_p^{{s_1}}(\rho ,{v_{{s_1}}})} \right\}\), 0 < s0 < s1. Estimates are derived for the linear widths and Kolmogorov widths of the compact sets \(\mathcal{F} = B{H_s}\bigcap {{L^{ - 1}}(B{L_{2,\omega }})}\), s > 0 (where BX is the unit ball in a space X).

Авторлар туралы

L. Kussainova

Gumilyov Eurasian National University

Хат алмасуға жауапты Автор.
Email: leili2006@mail.ru
Қазақстан, Nur-Sultan, 010008

Ya. Sultanaev

Akmulla Bashkir State Pedagogical University

Хат алмасуға жауапты Автор.
Email: sultanaevyt@gmail.com
Ресей, Ufa, Bashkortostan, 450008

G. Murat

Gumilyov Eurasian National University

Хат алмасуға жауапты Автор.
Email: gulnar_18.01@mail.ru
Қазақстан, Nur-Sultan, 010008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019