Existence of Solutions with a Given Number of Zeros to a Higher-Order Regular Nonlinear Emden–Fowler Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the nonlinear Emden–Fowler equation

\({y^{(n)}} + p(t,y,y\prime, \ldots ,{y^{(n - 1)}})|y{|^k}{\rm{sgn }}y = 0,\)
, where n ∈ ℕ, n ≥ 2, k ∈ ℝ, k > 1, and the function p(t, ξ1,…, ξn) is jointly continuous in all the variables, satisfies the Lipschitz condition with respect to the variables ξ1,…, ξn, and obeys the inequalities mp(t, ξ1,…, ξn) ≤ M with some positive constants M and m. For this equation, we prove the existence of solutions that are defined on an arbitrary given interval or half-interval and have a prescribed number of zeros.

作者简介

V. Rogachev

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: valdakhar@gmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2018