Existence of Solutions with a Given Number of Zeros to a Higher-Order Regular Nonlinear Emden–Fowler Equation


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the nonlinear Emden–Fowler equation

\({y^{(n)}} + p(t,y,y\prime, \ldots ,{y^{(n - 1)}})|y{|^k}{\rm{sgn }}y = 0,\)
, where n ∈ ℕ, n ≥ 2, k ∈ ℝ, k > 1, and the function p(t, ξ1,…, ξn) is jointly continuous in all the variables, satisfies the Lipschitz condition with respect to the variables ξ1,…, ξn, and obeys the inequalities mp(t, ξ1,…, ξn) ≤ M with some positive constants M and m. For this equation, we prove the existence of solutions that are defined on an arbitrary given interval or half-interval and have a prescribed number of zeros.

Об авторах

V. Rogachev

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: valdakhar@gmail.com
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).