Sobolev Orthogonal Polynomials Associated with Chebyshev Polynomials of the First Kind and the Cauchy Problem for Ordinary Differential Equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the polynomials Tr,n(x) (n = 0, 1,…) generated by Chebyshev polynomials Tn(x) and forming a Sobolev orthonormal system with respect to the inner product

\(\langle f,g\rangle = \sum\limits_{\nu = 0}^{r - 1} {{f^{(\nu)}}} ( - 1){g^{(\nu)}}(-1) + \int\limits_{-1}^1 {{f^{(r)}}} (x){g^{(r)}}(x)\mu (x)dx,\)
, where μ(x) = 2π−1(1 − x2)−1/2. It is shown that the Fourier sums in the polynomials Tr,n(x) (n = 0, 1,…) give a convenient and efficient tool for approximately solving the Cauchy problem for ordinary differential equations.

作者简介

I. Sharapudinov

Dagestan Scientific Center of the Russian Academy of Sciences; Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sharapud@mail.ru
俄罗斯联邦, Makhachkala, 367032; Vladikavkaz, 362027

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2018