Sobolev Orthogonal Polynomials Associated with Chebyshev Polynomials of the First Kind and the Cauchy Problem for Ordinary Differential Equations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the polynomials Tr,n(x) (n = 0, 1,…) generated by Chebyshev polynomials Tn(x) and forming a Sobolev orthonormal system with respect to the inner product

\(\langle f,g\rangle = \sum\limits_{\nu = 0}^{r - 1} {{f^{(\nu)}}} ( - 1){g^{(\nu)}}(-1) + \int\limits_{-1}^1 {{f^{(r)}}} (x){g^{(r)}}(x)\mu (x)dx,\)
, where μ(x) = 2π−1(1 − x2)−1/2. It is shown that the Fourier sums in the polynomials Tr,n(x) (n = 0, 1,…) give a convenient and efficient tool for approximately solving the Cauchy problem for ordinary differential equations.

Sobre autores

I. Sharapudinov

Dagestan Scientific Center of the Russian Academy of Sciences; Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: sharapud@mail.ru
Rússia, Makhachkala, 367032; Vladikavkaz, 362027

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2018