Solution of the boundary value problem for the equations of steady-state flow of a viscous incompressible nonisothermal fluid past a heated rigid spherical particle
- 作者: Malai N.V.1,2, Shchukin E.R.1,2
-
隶属关系:
- National Research University “Belgorod State University,”
- Joint Institute for High Temperatures
- 期: 卷 53, 编号 6 (2017)
- 页面: 766-772
- 栏目: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154430
- DOI: https://doi.org/10.1134/S0012266117060076
- ID: 154430
如何引用文章
详细
We obtain an analytical solution of a boundary value problem for a viscous incompressible nonisothermal fluid assuming an exponential–power law dependence of the fluid viscosity on temperature. A uniqueness theorem for the Navier–Stokes equation linearized with respect to the velocity is proved. We obtain expressions for the mass velocity components and pressure. The solution of the boundary value problem is sought in the form of an expansion in Legendre polynomials.
作者简介
N. Malai
National Research University “Belgorod State University,”; Joint Institute for High Temperatures
编辑信件的主要联系方式.
Email: malay@bsu.edu.ru
俄罗斯联邦, Belgorod, 308015; Moscow, 125412
E. Shchukin
National Research University “Belgorod State University,”; Joint Institute for High Temperatures
Email: malay@bsu.edu.ru
俄罗斯联邦, Belgorod, 308015; Moscow, 125412
补充文件
