Solution of the boundary value problem for the equations of steady-state flow of a viscous incompressible nonisothermal fluid past a heated rigid spherical particle
- Авторы: Malai N.V.1,2, Shchukin E.R.1,2
-
Учреждения:
- National Research University “Belgorod State University,”
- Joint Institute for High Temperatures
- Выпуск: Том 53, № 6 (2017)
- Страницы: 766-772
- Раздел: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154430
- DOI: https://doi.org/10.1134/S0012266117060076
- ID: 154430
Цитировать
Аннотация
We obtain an analytical solution of a boundary value problem for a viscous incompressible nonisothermal fluid assuming an exponential–power law dependence of the fluid viscosity on temperature. A uniqueness theorem for the Navier–Stokes equation linearized with respect to the velocity is proved. We obtain expressions for the mass velocity components and pressure. The solution of the boundary value problem is sought in the form of an expansion in Legendre polynomials.
Об авторах
N. Malai
National Research University “Belgorod State University,”; Joint Institute for High Temperatures
Автор, ответственный за переписку.
Email: malay@bsu.edu.ru
Россия, Belgorod, 308015; Moscow, 125412
E. Shchukin
National Research University “Belgorod State University,”; Joint Institute for High Temperatures
Email: malay@bsu.edu.ru
Россия, Belgorod, 308015; Moscow, 125412
Дополнительные файлы
