Wiener–Hopf equation whose kernel is a probability distribution
- Autores: Sgibnev M.S.1
-
Afiliações:
- Sobolev Institute of Mathematics
- Edição: Volume 53, Nº 9 (2017)
- Páginas: 1174-1196
- Seção: Integral Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154569
- DOI: https://doi.org/10.1134/S0012266117090087
- ID: 154569
Citar
Resumo
We prove the existence of a solution of an inhomogeneous generalized Wiener–Hopf equation whose kernel is a probability distribution on R generating a random walk drifting to +∞, while the inhomogeneous term f of the equation belongs to the space L1(0,∞) or L∞(0,∞). We establish the asymptotic properties of the solution of this equation under various assumptions about the inhomogeneity f.
Sobre autores
M. Sgibnev
Sobolev Institute of Mathematics
Autor responsável pela correspondência
Email: sgibnev@math.nsc.ru
Rússia, Novosibirsk, 630090
Arquivos suplementares
