Wiener–Hopf equation whose kernel is a probability distribution
- Авторы: Sgibnev M.S.1
-
Учреждения:
- Sobolev Institute of Mathematics
- Выпуск: Том 53, № 9 (2017)
- Страницы: 1174-1196
- Раздел: Integral Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154569
- DOI: https://doi.org/10.1134/S0012266117090087
- ID: 154569
Цитировать
Аннотация
We prove the existence of a solution of an inhomogeneous generalized Wiener–Hopf equation whose kernel is a probability distribution on R generating a random walk drifting to +∞, while the inhomogeneous term f of the equation belongs to the space L1(0,∞) or L∞(0,∞). We establish the asymptotic properties of the solution of this equation under various assumptions about the inhomogeneity f.
Об авторах
M. Sgibnev
Sobolev Institute of Mathematics
Автор, ответственный за переписку.
Email: sgibnev@math.nsc.ru
Россия, Novosibirsk, 630090
Дополнительные файлы
