Homogenization Method in the Problem of Long Wave Propagation from a Localized Source in a Basin over an Uneven Bottom


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the framework of the linearized shallow water equations, the homogenization method for wave type equations with rapidly oscillating coefficients that generally cannot be represented as periodic functions of the fast variables is applied to the Cauchy problem for the wave equation describing the evolution of the free surface elevation for long waves propagating in a basin over an uneven bottom. Under certain conditions on the function describing the basin depth, we prove that the solution of the homogenized equation asymptotically approximates the solution of the original equation. Model homogenized wave equations are constructed for several examples of one-dimensional sections of the real ocean bottom profile, and their numerical and asymptotic solutions are compared with numerical solutions of the original equations.

Авторлар туралы

D. Karaeva

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Хат алмасуға жауапты Автор.
Email: dariandr95@gmail.com
Ресей, Moscow, 119526; Dolgoprudnyi, 141701

A. Karaev

Moscow Institute of Physics and Technology (State University)

Email: dariandr95@gmail.com
Ресей, Dolgoprudnyi, 141701

V. Nazaikinskii

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: dariandr95@gmail.com
Ресей, Moscow, 119526; Dolgoprudnyi, 141701

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018