Asymptotic Behavior of Eigenvalues of a Boundary Value Problem for a Second-Order Elliptic Differential-Operator Equation with Spectral Parameter Quadratically Occurring in the Boundary Condition
- 作者: Aliev B.A.1,2
-
隶属关系:
- Institute of Mathematics and Mechanics
- Baku State Pedagogical University
- 期: 卷 54, 编号 9 (2018)
- 页面: 1256-1260
- 栏目: Short Communications
- URL: https://journal-vniispk.ru/0012-2661/article/view/154840
- DOI: https://doi.org/10.1134/S0012266118090124
- ID: 154840
如何引用文章
详细
The asymptotic behavior of eigenvalues of a boundary value problem for a secondorder differential-operator equation in a separable Hilbert space on a finite interval is studied for the case in which the same spectral parameter occurs linearly in the equation and quadratically in one of the boundary conditions. We prove that the problem has a sequence of eigenvalues converging to zero.
作者简介
B. Aliev
Institute of Mathematics and Mechanics; Baku State Pedagogical University
编辑信件的主要联系方式.
Email: aliyevbakhram@yandex.ru
阿塞拜疆, Baku, AZ1141; Baku, AZ1000
补充文件
