Asymptotic Behavior of Eigenvalues of a Boundary Value Problem for a Second-Order Elliptic Differential-Operator Equation with Spectral Parameter Quadratically Occurring in the Boundary Condition
- Авторы: Aliev B.A.1,2
-
Учреждения:
- Institute of Mathematics and Mechanics
- Baku State Pedagogical University
- Выпуск: Том 54, № 9 (2018)
- Страницы: 1256-1260
- Раздел: Short Communications
- URL: https://journal-vniispk.ru/0012-2661/article/view/154840
- DOI: https://doi.org/10.1134/S0012266118090124
- ID: 154840
Цитировать
Аннотация
The asymptotic behavior of eigenvalues of a boundary value problem for a secondorder differential-operator equation in a separable Hilbert space on a finite interval is studied for the case in which the same spectral parameter occurs linearly in the equation and quadratically in one of the boundary conditions. We prove that the problem has a sequence of eigenvalues converging to zero.
Об авторах
B. Aliev
Institute of Mathematics and Mechanics; Baku State Pedagogical University
Автор, ответственный за переписку.
Email: aliyevbakhram@yandex.ru
Азербайджан, Baku, AZ1141; Baku, AZ1000
Дополнительные файлы
