Behavior of Trajectories of Time-Invariant Systems


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Finitely many embedded localizing sets are constructed for invariant compact sets of a time-invariant differential system. These localizing sets are used to divide the state space into three subsets, the least localizing set and two sets called sets of the first kind and the second kind. We prove that the trajectory passing through a point of the set of the first kind remains in this set and tends to infinity. For a trajectory passing through a point of the set of the second kind, there are three possible types of behavior: it either goes to infinity or, at some finite time, enters the least localizing set, or has a nonempty ω-limit set contained in the intersection of the boundary of one of the constructed localizing sets with the universal section of the corresponding localizing function.

Авторлар туралы

A. Krishchenko

Bauman Moscow State Technical University; Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: apkri@bmstu.ru
Ресей, Moscow, 105005; Moscow, 119333

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2018