Behavior of Trajectories of Time-Invariant Systems


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Finitely many embedded localizing sets are constructed for invariant compact sets of a time-invariant differential system. These localizing sets are used to divide the state space into three subsets, the least localizing set and two sets called sets of the first kind and the second kind. We prove that the trajectory passing through a point of the set of the first kind remains in this set and tends to infinity. For a trajectory passing through a point of the set of the second kind, there are three possible types of behavior: it either goes to infinity or, at some finite time, enters the least localizing set, or has a nonempty ω-limit set contained in the intersection of the boundary of one of the constructed localizing sets with the universal section of the corresponding localizing function.

Об авторах

A. Krishchenko

Bauman Moscow State Technical University; Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Автор, ответственный за переписку.
Email: apkri@bmstu.ru
Россия, Moscow, 105005; Moscow, 119333

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).