Internal Layer for a System of Singularly Perturbed Equations with Discontinuous Right-Hand Side
- Авторлар: Mingkang N.1, Levashova N.T.2, Yafei P.3
-
Мекемелер:
- Institute for Mathematical Sciences at East China Normal University
- Lomonosov Moscow State University
- Institute for Mathematics and Statistics at Anhui Normal University
- Шығарылым: Том 54, № 12 (2018)
- Беттер: 1583-1594
- Бөлім: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154894
- DOI: https://doi.org/10.1134/S0012266118120054
- ID: 154894
Дәйексөз келтіру
Аннотация
We study a system of two singularly perturbed first-order equations on an interval. The equations have discontinuous right-hand sides and equal powers of the small parameter multiplying the derivatives. We consider a new class of problems with discontinuous right-hand side, prove the existence of a solution with an internal transition layer, and construct its asymptotic approximation of arbitrary order. The asymptotic approximations are constructed by the Vasil’eva method, and the existence theorems are proved by the matching method.
Авторлар туралы
Ni Mingkang
Institute for Mathematical Sciences at East China Normal University
Хат алмасуға жауапты Автор.
Email: xiaovikdo@163.com
ҚХР, Shanghai
N. Levashova
Lomonosov Moscow State University
Email: xiaovikdo@163.com
Ресей, Moscow, 119991
Pang Yafei
Institute for Mathematics and Statistics at Anhui Normal University
Email: xiaovikdo@163.com
ҚХР, Wuhu
Қосымша файлдар
