Degenerate Boundary Conditions for the Sturm-Liouville Problem on a Geometric Graph


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the boundary conditions of the Sturm-Liouville problem posed on a star-shaped geometric graph consisting of three edges with a common vertex. We show that the Sturm-Liouville problem has no degenerate boundary conditions in the case of pairwise distinct edge lengths. However, if the edge lengths coincide and all potentials are the same, then the characteristic determinant of the Sturm-Liouville problem cannot be a nonzero constant and the set of Sturm-Liouville problems whose characteristic determinant is identically zero and whose spectrum accordingly coincides with the entire plane is infinite (a continuum). It is shown that, for one special case of the boundary conditions, this set consists of eighteen classes, each having from two to four arbitrary constants, rather than of two problems as in the case of the Sturm-Liouville problem on an interval.

Авторлар туралы

V. Sadovnichii

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: rector@msu.ru
Ресей, Moscow, 119991

Ya. Sultanaev

Mavlyutov Institute of Mechanics; Akmulla Bashkir State Pedagogical University

Хат алмасуға жауапты Автор.
Email: sultanaevyt@gmail.com
Ресей, Ufa, 450054; Ufa, 450008

A. Akhtyamov

Bashkir State University

Хат алмасуға жауапты Автор.
Email: AkhtyamovAM@mail.ru
Ресей, Ufa, 450076

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019