Degenerate Boundary Conditions for the Sturm-Liouville Problem on a Geometric Graph


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the boundary conditions of the Sturm-Liouville problem posed on a star-shaped geometric graph consisting of three edges with a common vertex. We show that the Sturm-Liouville problem has no degenerate boundary conditions in the case of pairwise distinct edge lengths. However, if the edge lengths coincide and all potentials are the same, then the characteristic determinant of the Sturm-Liouville problem cannot be a nonzero constant and the set of Sturm-Liouville problems whose characteristic determinant is identically zero and whose spectrum accordingly coincides with the entire plane is infinite (a continuum). It is shown that, for one special case of the boundary conditions, this set consists of eighteen classes, each having from two to four arbitrary constants, rather than of two problems as in the case of the Sturm-Liouville problem on an interval.

作者简介

V. Sadovnichii

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: rector@msu.ru
俄罗斯联邦, Moscow, 119991

Ya. Sultanaev

Mavlyutov Institute of Mechanics; Akmulla Bashkir State Pedagogical University

编辑信件的主要联系方式.
Email: sultanaevyt@gmail.com
俄罗斯联邦, Ufa, 450054; Ufa, 450008

A. Akhtyamov

Bashkir State University

编辑信件的主要联系方式.
Email: AkhtyamovAM@mail.ru
俄罗斯联邦, Ufa, 450076

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019