Well-Posed Solvability of the Neumann Problem for a Generalized Mangeron Equation with Nonsmooth Coefficients


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For a fourth-order generalized Mangeron equation with nonsmooth coefficients defined on a rectangular domain, we consider the Neumann problem with nonclassical conditions that do not require matching conditions. We justify the equivalence of these conditions to classical boundary conditions for the case in which the solution to the problem is sought in an isotropic Sobolev space. The problem is solved by reduction to a system of integral equations whose well-posed solvability is established based on the method of integral representations. The well-posed solvability of the Neumann problem for the generalized Mangeron equation is proved by the method of operator equations.

Авторлар туралы

I. Mamedov

Institute of Control Systems

Хат алмасуға жауапты Автор.
Email: ilgar-mamedov-1971@mail.ru
Әзірбайжан, Baku, AZ1141

M. Mardanov

Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: misirmardanov@yahoo.com
Әзірбайжан, Baku, AZ1141

T. Melikov

Institute of Control Systems; Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: t.melik@rambler.ru
Әзірбайжан, Baku, AZ1141; Baku, AZ1141

R. Bandaliev

Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: bandaliyevr@gmail.com
Әзірбайжан, Baku, AZ1141

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019