Well-Posed Solvability of the Neumann Problem for a Generalized Mangeron Equation with Nonsmooth Coefficients
- Авторлар: Mamedov I.G.1, Mardanov M.D.2, Melikov T.K.1,2, Bandaliev R.A.2
-
Мекемелер:
- Institute of Control Systems
- Institute of Mathematics and Mechanics
- Шығарылым: Том 55, № 10 (2019)
- Беттер: 1362-1372
- Бөлім: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155178
- DOI: https://doi.org/10.1134/S0012266119100112
- ID: 155178
Дәйексөз келтіру
Аннотация
For a fourth-order generalized Mangeron equation with nonsmooth coefficients defined on a rectangular domain, we consider the Neumann problem with nonclassical conditions that do not require matching conditions. We justify the equivalence of these conditions to classical boundary conditions for the case in which the solution to the problem is sought in an isotropic Sobolev space. The problem is solved by reduction to a system of integral equations whose well-posed solvability is established based on the method of integral representations. The well-posed solvability of the Neumann problem for the generalized Mangeron equation is proved by the method of operator equations.
Авторлар туралы
I. Mamedov
Institute of Control Systems
Хат алмасуға жауапты Автор.
Email: ilgar-mamedov-1971@mail.ru
Әзірбайжан, Baku, AZ1141
M. Mardanov
Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: misirmardanov@yahoo.com
Әзірбайжан, Baku, AZ1141
T. Melikov
Institute of Control Systems; Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: t.melik@rambler.ru
Әзірбайжан, Baku, AZ1141; Baku, AZ1141
R. Bandaliev
Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: bandaliyevr@gmail.com
Әзірбайжан, Baku, AZ1141
Қосымша файлдар
