Well-Posed Solvability of the Neumann Problem for a Generalized Mangeron Equation with Nonsmooth Coefficients


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a fourth-order generalized Mangeron equation with nonsmooth coefficients defined on a rectangular domain, we consider the Neumann problem with nonclassical conditions that do not require matching conditions. We justify the equivalence of these conditions to classical boundary conditions for the case in which the solution to the problem is sought in an isotropic Sobolev space. The problem is solved by reduction to a system of integral equations whose well-posed solvability is established based on the method of integral representations. The well-posed solvability of the Neumann problem for the generalized Mangeron equation is proved by the method of operator equations.

Sobre autores

I. Mamedov

Institute of Control Systems

Autor responsável pela correspondência
Email: ilgar-mamedov-1971@mail.ru
Azerbaijão, Baku, AZ1141

M. Mardanov

Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: misirmardanov@yahoo.com
Azerbaijão, Baku, AZ1141

T. Melikov

Institute of Control Systems; Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: t.melik@rambler.ru
Azerbaijão, Baku, AZ1141; Baku, AZ1141

R. Bandaliev

Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: bandaliyevr@gmail.com
Azerbaijão, Baku, AZ1141

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2019