Inverse Sturm–Liouville problem with spectral polynomials in nonsplitting boundary conditions
- Авторлар: Sadovnichii V.A.1, Sultanaev Y.T.2,3, Akhtyamov A.M.2,4
-
Мекемелер:
- Lomonosov Moscow State University
- Institute of Mechanics, Ufa Scientific Center
- Bashkir State Pedagogical University
- Bashkir State University
- Шығарылым: Том 53, № 1 (2017)
- Беттер: 47-55
- Бөлім: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154232
- DOI: https://doi.org/10.1134/S0012266117010050
- ID: 154232
Дәйексөз келтіру
Аннотация
Theorems on the unique reconstruction of a Sturm–Liouville problem with spectral polynomials in nonsplitting boundary conditions are proved. Two spectra and finitely many eigenvalues (one spectrum and finitely many eigenvalues for a symmetric potential) of the problem itself are used as the spectral data. The results generalize the Levinson uniqueness theorem to the case of nonsplitting boundary conditions containing polynomials in the spectral parameter. Algorithms and examples of solving relevant inverse problems are also presented.
Авторлар туралы
V. Sadovnichii
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: rector@msu.ru
Ресей, Moscow, 119992
Ya. Sultanaev
Institute of Mechanics, Ufa Scientific Center; Bashkir State Pedagogical University
Email: rector@msu.ru
Ресей, Ufa, 450054; Ufa, 450000
A. Akhtyamov
Institute of Mechanics, Ufa Scientific Center; Bashkir State University
Email: rector@msu.ru
Ресей, Ufa, 450054; Ufa, 450074
Қосымша файлдар
