Inverse Sturm–Liouville problem with spectral polynomials in nonsplitting boundary conditions
- 作者: Sadovnichii V.A.1, Sultanaev Y.T.2,3, Akhtyamov A.M.2,4
-
隶属关系:
- Lomonosov Moscow State University
- Institute of Mechanics, Ufa Scientific Center
- Bashkir State Pedagogical University
- Bashkir State University
- 期: 卷 53, 编号 1 (2017)
- 页面: 47-55
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154232
- DOI: https://doi.org/10.1134/S0012266117010050
- ID: 154232
如何引用文章
详细
Theorems on the unique reconstruction of a Sturm–Liouville problem with spectral polynomials in nonsplitting boundary conditions are proved. Two spectra and finitely many eigenvalues (one spectrum and finitely many eigenvalues for a symmetric potential) of the problem itself are used as the spectral data. The results generalize the Levinson uniqueness theorem to the case of nonsplitting boundary conditions containing polynomials in the spectral parameter. Algorithms and examples of solving relevant inverse problems are also presented.
作者简介
V. Sadovnichii
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: rector@msu.ru
俄罗斯联邦, Moscow, 119992
Ya. Sultanaev
Institute of Mechanics, Ufa Scientific Center; Bashkir State Pedagogical University
Email: rector@msu.ru
俄罗斯联邦, Ufa, 450054; Ufa, 450000
A. Akhtyamov
Institute of Mechanics, Ufa Scientific Center; Bashkir State University
Email: rector@msu.ru
俄罗斯联邦, Ufa, 450054; Ufa, 450074
补充文件
