Inverse Sturm–Liouville problem with spectral polynomials in nonsplitting boundary conditions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Theorems on the unique reconstruction of a Sturm–Liouville problem with spectral polynomials in nonsplitting boundary conditions are proved. Two spectra and finitely many eigenvalues (one spectrum and finitely many eigenvalues for a symmetric potential) of the problem itself are used as the spectral data. The results generalize the Levinson uniqueness theorem to the case of nonsplitting boundary conditions containing polynomials in the spectral parameter. Algorithms and examples of solving relevant inverse problems are also presented.

作者简介

V. Sadovnichii

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: rector@msu.ru
俄罗斯联邦, Moscow, 119992

Ya. Sultanaev

Institute of Mechanics, Ufa Scientific Center; Bashkir State Pedagogical University

Email: rector@msu.ru
俄罗斯联邦, Ufa, 450054; Ufa, 450000

A. Akhtyamov

Institute of Mechanics, Ufa Scientific Center; Bashkir State University

Email: rector@msu.ru
俄罗斯联邦, Ufa, 450054; Ufa, 450074

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017