Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity
- Autores: Borodinova D.Y.1, Kritskov L.V.1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Volume 54, Nº 5 (2018)
- Páginas: 567-577
- Seção: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154745
- DOI: https://doi.org/10.1134/S0012266118050014
- ID: 154745
Citar
Resumo
For any operator defined by the differential operation Lu = −u″ + q(x)u on the interval G = (0, 1) with complex-valued potential q(x) locally integrable on G and satisfying the inequalities \(\int_{{x_1}}^{{x_2}} {\zeta |(q(\zeta ))|d\zeta \leqslant ln({x_1}/{x_2})} \) and \(\int_{{x_1}}^{{x_2}} {\zeta |(q(1 - \zeta ))|d\zeta \leqslant \gamma ln({x_1}/{x_2})} \) with some constant γ for all sufficiently small 0 < x1 < x2, we estimate the norms of root functions in the Lebesgue spaces Lp(G), 1 ≤ p < ∞. We show that for sufficiently small γ these norms satisfy the same estimates asymptotic in the spectral parameter as in the unperturbed case.
Sobre autores
D. Borodinova
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: dashaborodinova@gmail.com
Rússia, Moscow, 119991
L. Kritskov
Lomonosov Moscow State University
Email: dashaborodinova@gmail.com
Rússia, Moscow, 119991
Arquivos suplementares
