Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity
- 作者: Borodinova D.Y.1, Kritskov L.V.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 54, 编号 5 (2018)
- 页面: 567-577
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154745
- DOI: https://doi.org/10.1134/S0012266118050014
- ID: 154745
如何引用文章
详细
For any operator defined by the differential operation Lu = −u″ + q(x)u on the interval G = (0, 1) with complex-valued potential q(x) locally integrable on G and satisfying the inequalities \(\int_{{x_1}}^{{x_2}} {\zeta |(q(\zeta ))|d\zeta \leqslant ln({x_1}/{x_2})} \) and \(\int_{{x_1}}^{{x_2}} {\zeta |(q(1 - \zeta ))|d\zeta \leqslant \gamma ln({x_1}/{x_2})} \) with some constant γ for all sufficiently small 0 < x1 < x2, we estimate the norms of root functions in the Lebesgue spaces Lp(G), 1 ≤ p < ∞. We show that for sufficiently small γ these norms satisfy the same estimates asymptotic in the spectral parameter as in the unperturbed case.
作者简介
D. Borodinova
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: dashaborodinova@gmail.com
俄罗斯联邦, Moscow, 119991
L. Kritskov
Lomonosov Moscow State University
Email: dashaborodinova@gmail.com
俄罗斯联邦, Moscow, 119991
补充文件
