Bifurcation of an Oscillatory Mode under a Periodic Perturbation of a Special Oscillator


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study a bifurcation from the zero solution of the differential equation + xp/q = 0, where p > q > 1 are odd coprime numbers, under periodic (in particular, time-invariant) perturbations depending on a small positive parameter ε. The motion separation method is used to derive the bifurcation equation. To each positive root of this equation, there corresponds an invariant two-dimensional torus (a closed trajectory in the time-invariant case) shrinking to the equilibrium position x = 0 as ε → 0. The proofs use methods of the Krylov-Bogolyubov theory to study time-periodic perturbations and the implicit function theorem in the case of time-invari ant perturbations.

作者简介

Yu. Bibikov

St. Petersburg State University

编辑信件的主要联系方式.
Email: jy.bibikov@spbu.ru
俄罗斯联邦, St. Petersburg, 199034

V. Bukaty

St. Petersburg State University

编辑信件的主要联系方式.
Email: anna1918@mail.ru
俄罗斯联邦, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019