Bifurcation of an Oscillatory Mode under a Periodic Perturbation of a Special Oscillator
- 作者: Bibikov Y.N.1, Bukaty V.R.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 55, 编号 6 (2019)
- 页面: 753-757
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155033
- DOI: https://doi.org/10.1134/S001226611906003X
- ID: 155033
如何引用文章
详细
We study a bifurcation from the zero solution of the differential equation ẍ + xp/q = 0, where p > q > 1 are odd coprime numbers, under periodic (in particular, time-invariant) perturbations depending on a small positive parameter ε. The motion separation method is used to derive the bifurcation equation. To each positive root of this equation, there corresponds an invariant two-dimensional torus (a closed trajectory in the time-invariant case) shrinking to the equilibrium position x = 0 as ε → 0. The proofs use methods of the Krylov-Bogolyubov theory to study time-periodic perturbations and the implicit function theorem in the case of time-invari ant perturbations.
作者简介
Yu. Bibikov
St. Petersburg State University
编辑信件的主要联系方式.
Email: jy.bibikov@spbu.ru
俄罗斯联邦, St. Petersburg, 199034
V. Bukaty
St. Petersburg State University
编辑信件的主要联系方式.
Email: anna1918@mail.ru
俄罗斯联邦, St. Petersburg, 199034
补充文件
