Changes in a Finite Part of the Spectrum of the Laplace Operator under Delta-Like Perturbations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the spectrum of the Laplace operator in a bounded simply connected domain with the zero Dirichlet condition on the boundary under delta-like perturbations of the operator at an interior point of the domain. We determine the maximal operator for the perturbations and single out a class of invertible restrictions of this operator whose spectra differ from the spectrum of the original operator by a finite (possibly, empty) set. These results can be viewed as transferring some of H. Hochstadt’s results for Sturm-Liouville operators to Laplace operators.

作者简介

B. Kanguzhin

Al-Farabi Kazakh National University; Institute of Mathematics and Mathematical Modeling

编辑信件的主要联系方式.
Email: kanbalta@mail.ru
哈萨克斯坦, Almaty, 050040; Almaty, 050010

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019