General compactly supported solution of an integral equation of the convolution type


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We find the general form of solutions of the integral equation ∫k(ts)u1(s) ds = u2(t) of the convolution type for the pair of unknown functions u1 and u2 in the class of compactly supported continuously differentiable functions under the condition that the kernel k(t) has the Fourier transform \(\widetilde {{P_2}}\), where \(\widetilde {{P_1}}\) and \(\widetilde {{P_2}}\) are polynomials in the exponential eiτx, τ > 0, with coefficients polynomial in x. If the functions \({P_l}\left( x \right) = \widetilde {{P_l}}\left( {{e^{i\tau x}}} \right)\), l = 1, 2, have no common zeros, then the general solution in Fourier transforms has the form Ul(x) = Pl(x)R(x), l = 1, 2, where R(x) is the Fourier transform of an arbitrary compactly supported continuously differentiable function r(t).

Sobre autores

O. Gun’ko

Khar’kiv National Economic University

Autor responsável pela correspondência
Email: gunko-olga@lenta.ru
Ucrânia, Khar’kiv

V. Sulima

Khar’kiv National Economic University

Email: gunko-olga@lenta.ru
Ucrânia, Khar’kiv

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016