General compactly supported solution of an integral equation of the convolution type


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We find the general form of solutions of the integral equation ∫k(ts)u1(s) ds = u2(t) of the convolution type for the pair of unknown functions u1 and u2 in the class of compactly supported continuously differentiable functions under the condition that the kernel k(t) has the Fourier transform \(\widetilde {{P_2}}\), where \(\widetilde {{P_1}}\) and \(\widetilde {{P_2}}\) are polynomials in the exponential eiτx, τ > 0, with coefficients polynomial in x. If the functions \({P_l}\left( x \right) = \widetilde {{P_l}}\left( {{e^{i\tau x}}} \right)\), l = 1, 2, have no common zeros, then the general solution in Fourier transforms has the form Ul(x) = Pl(x)R(x), l = 1, 2, where R(x) is the Fourier transform of an arbitrary compactly supported continuously differentiable function r(t).

作者简介

O. Gun’ko

Khar’kiv National Economic University

编辑信件的主要联系方式.
Email: gunko-olga@lenta.ru
乌克兰, Khar’kiv

V. Sulima

Khar’kiv National Economic University

Email: gunko-olga@lenta.ru
乌克兰, Khar’kiv

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016