General compactly supported solution of an integral equation of the convolution type
- 作者: Gun’ko O.V.1, Sulima V.V.1
-
隶属关系:
- Khar’kiv National Economic University
- 期: 卷 52, 编号 9 (2016)
- 页面: 1133-1141
- 栏目: Integral Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154028
- DOI: https://doi.org/10.1134/S0012266116090044
- ID: 154028
如何引用文章
详细
We find the general form of solutions of the integral equation ∫k(t − s)u1(s) ds = u2(t) of the convolution type for the pair of unknown functions u1 and u2 in the class of compactly supported continuously differentiable functions under the condition that the kernel k(t) has the Fourier transform \(\widetilde {{P_2}}\), where \(\widetilde {{P_1}}\) and \(\widetilde {{P_2}}\) are polynomials in the exponential eiτx, τ > 0, with coefficients polynomial in x. If the functions \({P_l}\left( x \right) = \widetilde {{P_l}}\left( {{e^{i\tau x}}} \right)\), l = 1, 2, have no common zeros, then the general solution in Fourier transforms has the form Ul(x) = Pl(x)R(x), l = 1, 2, where R(x) is the Fourier transform of an arbitrary compactly supported continuously differentiable function r(t).
作者简介
O. Gun’ko
Khar’kiv National Economic University
编辑信件的主要联系方式.
Email: gunko-olga@lenta.ru
乌克兰, Khar’kiv
V. Sulima
Khar’kiv National Economic University
Email: gunko-olga@lenta.ru
乌克兰, Khar’kiv
补充文件
