Symmetries, coverings, and decomposition of systems and trajectory generation


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We derive relations between the notions of symmetry, covering, and decomposition of systems and trajectory generation. We show that any decomposition of a system determines a finite-dimensional covering of that system and is determined by it. We present conditions on vector fields under which any covering is obtained by factorization along the Lie algebra of such fields. On the basis of these relations, we study whether a point-to-point steering problem can be transformed into a set of boundary value problems of lower dimension.

Об авторах

Yu. Belinskaya

Bauman Moscow State Technical University

Автор, ответственный за переписку.
Email: usbelka@mail.ru
Россия, Moscow

V. Chetverikov

Bauman Moscow State Technical University

Email: usbelka@mail.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).