Symmetries, coverings, and decomposition of systems and trajectory generation
- Авторы: Belinskaya Y.S.1, Chetverikov V.N.1
-
Учреждения:
- Bauman Moscow State Technical University
- Выпуск: Том 52, № 11 (2016)
- Страницы: 1423-1435
- Раздел: Control Theory
- URL: https://journal-vniispk.ru/0012-2661/article/view/154151
- DOI: https://doi.org/10.1134/S0012266116110045
- ID: 154151
Цитировать
Аннотация
We derive relations between the notions of symmetry, covering, and decomposition of systems and trajectory generation. We show that any decomposition of a system determines a finite-dimensional covering of that system and is determined by it. We present conditions on vector fields under which any covering is obtained by factorization along the Lie algebra of such fields. On the basis of these relations, we study whether a point-to-point steering problem can be transformed into a set of boundary value problems of lower dimension.
Об авторах
Yu. Belinskaya
Bauman Moscow State Technical University
Автор, ответственный за переписку.
Email: usbelka@mail.ru
Россия, Moscow
V. Chetverikov
Bauman Moscow State Technical University
Email: usbelka@mail.ru
Россия, Moscow
Дополнительные файлы
