On ordered-covering mappings and implicit differential inequalities


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We define the set of ordered covering of a mapping that acts in partially ordered spaces; we suggest a method for finding the set of ordered covering of vector functions of several variables and the Nemytskii operator acting in Lebesgue spaces. We prove assertions on operator inequalities in arbitrary partially ordered spaces. We obtain conditions that use a set of ordered covering of the corresponding mapping and ensure that the existence of an element u such that f(u) ≥ y implies the solvability of the equation f(x) = y and the estimate xu for its solution. We study the problem on the existence of the minimal and least solutions. These results are used for the analysis of an implicit differential equation. For the Cauchy problem, we prove a theorem on an inequality of the Chaplygin type.

Об авторах

E. Zhukovskiy

Derzhavin Tambov State University; Peoples’ Friendship University of Russia

Автор, ответственный за переписку.
Email: zukovskys@mail.ru
Россия, Tambov; Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).