Boundary value problem for a first-order partial differential equation with a fractional discretely distributed differentiation operator
- Авторы: Pskhu A.V.1
-
Учреждения:
- Institute of Applied Mathematics and Automation
- Выпуск: Том 52, № 12 (2016)
- Страницы: 1610-1623
- Раздел: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154202
- DOI: https://doi.org/10.1134/S0012266116120089
- ID: 154202
Цитировать
Аннотация
We solve a boundary value problem for a first-order partial differential equation in a rectangular domain with a fractional discretely distributed differentiation operator. The fractional differentiation is given by Dzhrbashyan–Nersesyan operators. We construct a representation of the solution and prove existence and uniqueness theorems. The results remain valid for the corresponding equations with Riemann–Liouville and Caputo derivatives. In terms of parameters defining the fractional differential operator, we derive necessary and sufficient conditions for the solvability of the problem.
Об авторах
A. Pskhu
Institute of Applied Mathematics and Automation
Автор, ответственный за переписку.
Email: pskhu@list.ru
Россия, Nalchik
Дополнительные файлы
