Distribution of the spectrum of a singular positive Sturm–Liouville operator perturbed by the Dirac delta function


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Sturm–Liouville operator generated in the space L2[0,+∞) by the expression la,b:= −d2/dx2 +x+(xb) and the boundary condition y(0) = 0. We prove that the eigenvalues λn of this operator satisfy the inequalities λ10 < λ1 < λ20 and λn0 ≤ λn < λn+10, n = 2, 3,..., where {−λn0} is the sequence of zeros of the Airy function Ai (λ). We find the asymptotics of λn as n → +∞ depending on the parameters a and b.

作者简介

A. Pechentsov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: pechentsovas@rambler.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017