Distribution of the spectrum of a singular positive Sturm–Liouville operator perturbed by the Dirac delta function
- 作者: Pechentsov A.S.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 53, 编号 8 (2017)
- 页面: 1029-1034
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154515
- DOI: https://doi.org/10.1134/S0012266117080079
- ID: 154515
如何引用文章
详细
We consider the Sturm–Liouville operator generated in the space L2[0,+∞) by the expression la,b:= −d2/dx2 +x+aδ(x−b) and the boundary condition y(0) = 0. We prove that the eigenvalues λn of this operator satisfy the inequalities λ10 < λ1 < λ20 and λn0 ≤ λn < λn+10, n = 2, 3,..., where {−λn0} is the sequence of zeros of the Airy function Ai (λ). We find the asymptotics of λn as n → +∞ depending on the parameters a and b.
作者简介
A. Pechentsov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: pechentsovas@rambler.ru
俄罗斯联邦, Moscow, 119991
补充文件
