Distribution of the spectrum of a singular positive Sturm–Liouville operator perturbed by the Dirac delta function


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the Sturm–Liouville operator generated in the space L2[0,+∞) by the expression la,b:= −d2/dx2 +x+(xb) and the boundary condition y(0) = 0. We prove that the eigenvalues λn of this operator satisfy the inequalities λ10 < λ1 < λ20 and λn0 ≤ λn < λn+10, n = 2, 3,..., where {−λn0} is the sequence of zeros of the Airy function Ai (λ). We find the asymptotics of λn as n → +∞ depending on the parameters a and b.

Об авторах

A. Pechentsov

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: pechentsovas@rambler.ru
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).