Limit-periodic solutions of integro-differential equations in a critical case


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider equations with nonlinear terms representable by power series in the variable and functionals in integral form. The equation depends on a small exponentially limitperiodic perturbation, i.e., on a function that exponentially tends to a periodic function as the independent variable increases. In the Lyapunov critical case of one zero root, we prove the existence of a family of exponentially limit-periodic solutions of the equation in the form of power series in the small parameter and arbitrary initial values of the noncritical variables.

作者简介

V. Sergeev

Dorodnitsyn Computing Center of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vsergeev@yandex.ru
俄罗斯联邦, Moscow, 119333

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017