Limit-periodic solutions of integro-differential equations in a critical case
- 作者: Sergeev V.S.1
-
隶属关系:
- Dorodnitsyn Computing Center of the Russian Academy of Sciences
- 期: 卷 53, 编号 9 (2017)
- 页面: 1197-1206
- 栏目: Integral Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154571
- DOI: https://doi.org/10.1134/S0012266117090099
- ID: 154571
如何引用文章
详细
We consider equations with nonlinear terms representable by power series in the variable and functionals in integral form. The equation depends on a small exponentially limitperiodic perturbation, i.e., on a function that exponentially tends to a periodic function as the independent variable increases. In the Lyapunov critical case of one zero root, we prove the existence of a family of exponentially limit-periodic solutions of the equation in the form of power series in the small parameter and arbitrary initial values of the noncritical variables.
作者简介
V. Sergeev
Dorodnitsyn Computing Center of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: vsergeev@yandex.ru
俄罗斯联邦, Moscow, 119333
补充文件
