Space–time chaos in a system of reaction–diffusion equations
- 作者: Zaitseva M.F.1, Magnitskii N.A.2
-
隶属关系:
- Dokuchaev Soil Science Institute
- Institute for Systems Analysis of the Russian Academy of Sciences
- 期: 卷 53, 编号 11 (2017)
- 页面: 1519-1523
- 栏目: Short Communications
- URL: https://journal-vniispk.ru/0012-2661/article/view/154632
- DOI: https://doi.org/10.1134/S0012266117110155
- ID: 154632
如何引用文章
详细
We find conditions for the bifurcation of periodic spatially homogeneous and spatially inhomogeneous solutions of a three-dimensional system of nonlinear partial differential equations describing a soil aggregate model. We show that the transition to diffusion chaos in this model occurs via a subharmonic cascade of bifurcations of stable limit cycles in accordance with the universal Feigenbaum–Sharkovskii–Magnitskii bifurcation theory.
作者简介
M. Zaitseva
Dokuchaev Soil Science Institute
编辑信件的主要联系方式.
Email: mf.zaitseva@gmail.com
俄罗斯联邦, Moscow, 119017
N. Magnitskii
Institute for Systems Analysis of the Russian Academy of Sciences
Email: mf.zaitseva@gmail.com
俄罗斯联邦, Moscow, 117312
补充文件
