Space–time chaos in a system of reaction–diffusion equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We find conditions for the bifurcation of periodic spatially homogeneous and spatially inhomogeneous solutions of a three-dimensional system of nonlinear partial differential equations describing a soil aggregate model. We show that the transition to diffusion chaos in this model occurs via a subharmonic cascade of bifurcations of stable limit cycles in accordance with the universal Feigenbaum–Sharkovskii–Magnitskii bifurcation theory.

作者简介

M. Zaitseva

Dokuchaev Soil Science Institute

编辑信件的主要联系方式.
Email: mf.zaitseva@gmail.com
俄罗斯联邦, Moscow, 119017

N. Magnitskii

Institute for Systems Analysis of the Russian Academy of Sciences

Email: mf.zaitseva@gmail.com
俄罗斯联邦, Moscow, 117312

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017